The Contributions of Food Science to Help Americans Achieve the Dietary Guidelines - Future Opportunities and Challenges

John Ruff, CFS
Immediate Past President, IFT
March 14, 2014

Institute of Food Technologists (IFT)

- Founded in 1939
- Dedicated to working together to advance the science of food, with the ultimate goal of ensuring a safe, nutritious, affordable and abundant food supply
- Non-profit scientific society—over 18,000 members from more than 100 countries
- Brings together food scientists, technologists and related professionals from academia, government and industry

Outline

- Role of food science and technology
- Functions, opportunities and challenges
 - Sodium
 - Sugars
 - Fats and fatty acids
- Unintended consequences
- Nutrient contributions from packaged foods
- Summary
- Q&A

Food science and technology

- Food processing evolved from the need to preserve food, to improve nutritional and other desirable qualities, and for better consumer health and wellness.
- Food scientists and technologists transform raw food materials and ingredients into a variety of safe, nutritious, palatable, and affordable foods that may be consumed year around.
- Current farm-to-fork food system is complex and includes:
 - Agricultural production and harvesting
 - Post-harvest processing including holding and storing of raw materials
 - Ingredient transformation
 - Food manufacturing (formulation, food processing and packaging)
 - Transportation and distribution
 - Retailing; food service; and food preparation at home

Food science and technology (cont.)

In addition to meeting consumer needs for palatable, safe, affordable, nutritious, convenient, and diverse foods, food science and technology serves many other purposes including:

- Improve health and wellness
- Enhance nutritional quality of food
- Provide an efficient nutrient delivery system
- Improve digestibility, bioavailability, and palatability of foods
- Improve food safety and quality (remove potential toxic substances and anti-nutrients, prevent growth of pathogens, control spoilage microorganisms)
- Develop technologies/processes to produce foods more sustainably
- Reduce post-harvest losses
- Increase shelf-life of foods
- Improve transportability of foods

Sodium

- Sodium is an essential nutrient – regulates extracellular volume, maintains acid-base balance, neural transmission, renal function, cardiac output, and myocytic contraction
- Occurs naturally in foods such as milk, beets and celery
- Most common form of sodium in food is sodium chloride – primary source of sodium in diet
- Sodium and salt often used interchangeably
- For thousands of years salting was the primary method of preserving foods – meat, fish, eggs, and vegetables
- By 19th century other methods such as canning, refrigerating and freezing decreased the need to use salt
- Now commercial methods such as pasteurization, irradiation and other methods have decreased the use of salt in foods
- Adding iodine to salt has eliminated iodine deficiency in the U.S.
Sodium: Functional role in foods

- Nutrition
- Microbiological safety
- Palatability
- Flavor—improves sensory properties of foods, flavor enhancer, masks bitter flavors
- Texture
- Structure integrity
- Preservation

Common sodium-containing compounds and their functions in food

- Humectating Agents:
 - Polysorbate 80
 - Sorbitol
 - Sorbitan esters
 - Xanthan gum
 - Gellan gum
 - Carrageenan
- Sequestrating Agents:
 - Disodium hydrogen phosphate
 - Sodium dodecyl sulfate
 - Sodium carbonate
 - Sodium hydrogen carbonate
- Flavor Enhancing Agents:
 - Guanosine 5′-monophosphate (GMP)
 - Inosine 5′-monophosphate (IMP)
 - Ribonucleotides
- Emulsifying Agents:
 - Glycerol
 - Maltodextrin
 - Starch
 - Polysaccharides
 - Polysilicic acid
- Thickening Agents:
 - CMC
 - Sodium alginate
 - Sodium citrate
 - Sodium hydroxypropyl cellulose
- Anticaking Agents:
 - Magnesium oxide
 - Calcium phosphate
 - Sodium salicylate

Sodium reduction strategies: Opportunities

Goal is to develop palatable, nutritious, safe, and affordable low-sodium foods

- Small reductions (5-10%) of sodium chloride over time in foods will help decrease sodium intake without being noticeable
- Salt substitutes/enhancers
 - Potassium chloride, sodium chloride
 - Yeast extract, hydrolyzed vegetable protein
 - MSG, lactates, sea salts
- Use of herbs and spices
- Umami-tasting extracts from aqueous plants
- Sodium reduction strategies:
 - Reduced portion sizes/packages and other ways to reduce calorie consumption
 - Increase potassium content in foods to balance the sodium
 - Increase solubility of salt crystals to increase the sensation of saltiness for a given amount of salt
 - Use of herbs and spices
- Other sodium-containing compounds
 - Disodium phosphate
 - Potassium citrate
 - Sodium bicarbonate
 - Baking powder
 - Baking soda

Efforts to reduce sodium

- In recent years, food manufacturers have responded to the calls for reduced sodium intake by launching a number of no-, very low-, low-, and reduced-sodium foods across many food product categories
- As part of the National Salt Reduction Initiative, reformulation efforts have led to reduced sodium content in foods
 - 21 companies reduced sodium content in popular foods
 - Sodium levels in ready-to-eat breakfast cereals decreased by 11.2%, for example (Thomas et al., 2013)

Sources of sodium in the diet

- NHANES data - 2007-2008 (CDC, 2012)
 - Age 2+ years
 - Top ten food categories - 44% of the overall sodium consumption
 - Bread and rolls
 - Cold cuts/ribs meats
 - Pizza
 - Poultry
 - Soups
 - Sandwiches
 - Cheese
 - Pasta mixed dishes
 - Meat mixed dishes
 - Savory snacks

Sodium reduction strategies: Challenges

- Food processing and safety challenges:
 - Palatability is the biggest barrier
 - Lithium chloride provides similar saltiness but it is toxic
 - Salt replacers and substitutes provide aftertaste (such as bitter, metallic and astringent tastes)
 - Potassium chloride can replace up to 30% of sodium chloride in many foods, but beyond that the food is usually unpalatable
 - Other ingredients may be added to mask the off flavors
 - Microbiological instability
 - Salt replacers/substitutes may have limited applications
 - Sodium replacers/substitutes may provide the salty taste but cannot compensate for the other functions of sodium such as texture of dough, microbiological safety and shelf life
 - Increase cost—salt replacers, bitter blockers, flavor enhancers, new technologies
 - Salt replacers/substitutes may have limited applications
 - Sodium replacers/substitutes may provide the salty taste but cannot compensate for the other functions of sodium such as texture of dough, microbiological safety and shelf life
 - Increase cost—salt replacers, bitter blockers, flavor enhancers, new technologies
 - Microbiological instability
 - Palatability is the biggest barrier
 - Lithium chloride provides similar saltiness but it is toxic
 - Salt replacers and substitutes provide aftertaste (such as bitter, metallic and astringent tastes)
 - Potassium chloride can replace up to 30% of sodium chloride in many foods, but beyond that the food is usually unpalatable
 - Other ingredients may be added to mask the off flavors

© 2010 Institute of Food Technologists
Efforts to reduce sodium (cont.)

- According to the Mintel’s Global New Products Database
 - Low-, no-, or reduced-sodium claims increased almost 115% from 2005 to 2008 due to public health initiatives to educate consumers about the potential risks of high sodium intake
 - Most recent research shows that the number of these claims has decreased 5% during 2010–2011
 - The decline is perhaps due to poor sales and challenges in finding suitable salt replacers
 - Early on, food manufacturers made public statements about their sodium reduction efforts
 - Some manufacturers have begun to take a “stealth health approach” by reducing sodium in foods without marketing them to consumers as being lower in sodium, because consumers often perceive these claims as a sacrifice to flavor

Sugars: Intrinsic and added

- Sugars occur intrinsically in foods, e.g., fructose, glucose and sucrose in fruits, lactose in dairy products.
- Types of sugars added in foods:
 - Agave nectar, brown sugar, corn sweetener, corn syrup, dextrose, evaporated cane juice, fructose, fruit juice concentrates, glucose, high-fructose corn syrup (HFCS), honey, invert sugar, lactose, maltose, malt syrup, maple syrup, molasses, raw sugar, sucrose, sugar, and syrup

Sugars: Intrinsic and added (cont.)

- Functional properties depend on the composition of the intact sweetener (mono- or disaccharide) in the food or beverage
- Metabolic properties depend on the proportion of monosaccharides (free fructose and glucose) reaching the bloodstream after digestion
- Sugars are similar in terms of:
 - Composition
 - Fructose-to-glucose ratio
 - Sweetness
 - Absorption, and metabolism
 - Reformulation by substituting one sugar for another may not significantly change the nutritional value

Sweeteners: Caloric vs. non caloric

Types of sweeteners
- Caloric sweeteners
 - Caloric sweeteners – provide energy
 - Sugars: 4 kcal/g
 - Polyols: 0.2 – 2.6 kcal/g
 - High-intensity sweeteners
 - No or negligible calories due to high sweetness intensity
 - Amino acid based: 4 kcal/g
 - Non digestible, non-caloric high intensity sweeteners: 0 kcal/g (e.g., acesulfame K, saccharin, sucralose, stevia)

Sugars: Attributes in food

- Nutritional value
- Sensory: sweetness, taste, aroma, texture, appearance
- Physical: crystallization, viscosity, grain size and distribution, hygroscopicity, osmotic pressure
- Microbial: preservation, fermentation
- Chemical: inversion, carmelization

Sources of added sugars in the diet

NHANES 2007-2008; ages 2+ years (Welsh et al., 2011)
- Sweets – 47.8 g (sodas, candies and gums, added sugars and syrups, fruit-flavored drinks (fruitades) and sports drinks, presweetened coffees and teas, alcohol-containing drinks, and energy drinks)
- Grains – 17 g (cakes and cookies, ready-to-eat cereals, breads and muffins, and other grains)
- Dairy – 7.9 g (dairy desserts, milk, yogurt, and other dairy)
- Protein sources – 1.8 g (combination of meat, eggs, beans)
- Fruit and vegetables – 1.7 g
- Fats and oils – 0.6 g

Sugar reduction strategies: Opportunities

- Sugar substitutes:
 - Expand food choices
 - Control carbohydrate and caloric intake
 - Help manage weight
 - Help in controlling blood sugar in individuals with diabetes
 - Reduce the potential for dental caries

Sugar substitutes include:
- Intense sweeteners (e.g., aspartame, saccharin, sucralose, stevia, monk fruit)
- Polyols or sugar alcohols (e.g., erythritol, polyglycitols, isomalt, lactitol, maltitol, sorbitol, xylitol, mannitol)
- Fructooligosaccharides or oligofructans, fructose polymers
- Sugar substitute blends (e.g., sugar alcohol and stevia)

Sugar reduction strategies: Challenges

- Consumer acceptability
 - Lowering added sugars gradually over time to moderate consumers' palates to find “less sweet” acceptable
- Safety consideration and shelf life
- Nutritional impact
- Intense sweeteners: lack bulk, loss of granulation and texture in foods, loss of viscosity and mouthfeel in beverages
- Polyols lack crystallization ability, and have laxative effects in high concentrations
- Depending upon the sugar substitute used, complete redesign, not a simple reformulation is needed
- Concerns about long ingredient list due to addition of bulking agents, sweetness enhancers and other ingredients used to replace sugars
- Availability, cost and practical application of using sugar substitute in foods and beverages

Efforts to reduce sugars

NHANES (Welsh et al., 2011):
- The absolute intake of added sugars in people 2 years and older has recently decreased by 24% over a period of 8 years
 100.1 g/d (95% CI: 92.8, 107.3 g/d) in 1999–2000
 76.7 g/d (95% CI: 71.6, 81.9 g/d) in 2007–2008
- Reduction in sugar-sweetened soda a significant factor
- Food scientists have reformulated foods with reduced sugar content including breakfast cereals, soft drinks, dairy foods, and bakery foods, e.g., sugar content in ready-to-eat breakfast cereals has been decreased by 7.6% (Thomas et al., 2013)

Fats and fatty acids

- Dietary fats:
 - Source of energy and essential fatty acids
 - Aid in absorption and metabolism of fat soluble vitamins
 - Act as carrier for nutrients
 - Contribute to satiety

Fats and fatty acids: Dietary guidance

- Fats have a long evolving history:
 - Food scientists, technologists and the food industry have responded to the evolution of the dietary guidance on fats
 - Shift from animal fat to tropical fats to reduce cholesterol intake
 - Recommendation to use margarine instead of butter, reduce lard
 - Development of low/no-fat products to reduce total fat consumption
 - Recommendation to reduce saturated fat — leading to the use of partially hydrogenated oils
 - Shift from tropical fats to oils high in PUFA and now to MUFA and oils high in oleic acid
 - Replacing partially hydrogenated oils to reduce/eliminate trans fat
Fats and fatty acids: Functiona

Fats and fatty acids: Opportunities

In recent years, advances in food science, technology and agriculture have been underway to address the nutritional and genetic makeup of alternative oil sources such as sunflower, canola, and soybean.

- Fatty acid compositions have been modified via either traditional selective hybridization or gene insertion techniques or innovative technologies
 - To improve functional profile
 - Low in saturated fatty acids
 - High in monounsaturated fatty acids (e.g., oleic acid)
 - To improve heat and oxidative stability
 - To improve storage and shelf life
- Recent innovations include:
 - Oleic and stearic acids (e.g., sunflower)
 - Omega-9 acids (e.g., canola, sunflower)
 - EPA and DHA (e.g., canola)
 - Omega-3 fatty acids
 - BPA and phthalate (e.g., canola)

Fats and fatty acids: Opportunities (cont.)

- Genetically enhanced soybean oil:
 - High in oleic acid (75%)
 - Contains less than 3% linolenic acid (for improved flavor and stability)
 - 20% less saturated fat than regular soybean oil
 - No trans fat
 - Heat stability for frying and longer fry life
 - Provides flexibility in food preparation and mixing with other oils
 - Suitable for both extreme high and low temperature
 - Volume expected to increase from 300 million lbs in 2014 to 750 million lbs in 2015 and 9 billion lbs by 2023

Innovations in fats and oils

- Enzymatic interesterification helps design the oil to provide desirable melting profile and other functions
 - Eliminate or reduce trans fat
 - Blending of different oils or fat fractions to increase functionality
 - Techniques to develop functional shortening by blending cellulose fibers and triglycerides
 - Reduce saturated fatty acid levels by more than 40%
 - Increase monounsaturated fatty acids
 - Virtually trans fat free

Innovations in fats and oils (cont.)

- High oleic acid canola oil
 - High oxidative stability
 - Low levels of saturated fats
 - Trans fat free
 - Bland flavor
 - Extended storage and shelf life
- High oleic acid sunflower oil, canola oil and soybean oil have been in the market in the last 5 years
 - Efforts are underway to create High Stearic High Oleic acid oils

Innovations in fats and oils (cont.)

- Soybean oil is widely used in foods for human consumption
- High oleic soybean oil is expected to increase to 35-40% of the domestic crush by 2023
- Flaxseed oil and flaxseed are sold for human consumption in specialty stores
- Work is being done to develop high oleic safflower and high oleic peanut oil
 - Both are low volume commodity oils, therefore their oleic counterpart may be smaller in volume

Innovations in fats and oils (cont.)
Innovations in fats and oils (cont.)

Omega-9 oils

Since 2006, use of omega-9 oils has resulted in removal of 700 million pounds of trans fat and 300 million pounds of saturated fat from the North American diet.
- Canola omega-9 oil:
 - High in mono- and polyunsaturated fats
 - Low in saturated and trans fat
- Sunflower omega-9 oil:
 - No saturated fats
 - Zero trans fat
 - High in monounsaturated fatty acids

Fats and fatty acids: Challenges

- “Healthier” oils are almost always intrinsically less stable due to the unsaturated fatty acid content
 - Heat stability for cooking
 - Ambient temperature stability over weeks/months
- Requirement for solid fat to provide functionality and structure cannot be eliminated, e.g., cookies
- Taste challenges remain to be solved with many of the newer oils, compound by the lower oxidative stability
- Current cost of some new fats inhibits use in many products, e.g., interesterified fats
- Complexity, time and cost of fat replacement is frequently the highest of any product reformulation

Efforts to reduce trans fat

- Food companies have responded to the dietary guidance and consumers’ concerns, while also delivering on consumers’ quality and taste expectations
 - Creating new fats/oils or blends to reformulate foods to reduce both saturated fat and trans fat
 - Voluntarily lowered the amounts of trans fats in food products by over 73%, since 2003
 - To reformulate about 450 foods (food categories - cereal, cookies, crackers, pizza and desserts) involved 100,000 man hours
 - Efforts continue to further reduce saturated and trans fat by developing new fats/oils and technology

Unintended consequences of focus on a single nutrient

- **Fats**
 - Consumers not monitoring caloric intake while consuming low-fat products leading to increased calorie consumption (Snackwells effect)
 - Reduction of saturated fats by replacement of tropical oils with partially hydrogenated oils
 - Current replacement of partially hydrogenated oils by saturated fat
- **Sodium**
 - Reduced safety barriers in some low-sodium foods (In UK some reformulations had to be reversed)
 - Lower palatability driving consumers to foods high in sodium

Algal flour:
- Derived from algae
- Contains more than 50% lipids (primarily monounsaturated fatty acids), 1/3 carbohydrates (polysaccharides, dietary fiber, and simple sugar)
- Also contains protein, phospholipids, mono- and diglycerides, potassium, carotenoids and B-vitamins
- Improved product stability and consistency
- Can be used for fat-or calorie-reduced foods

Omega-3 canola oil
- Rich in EPA and DHA
- Shelf stable
- Expected to be available in the market by 2020

Omega-3 stearidonic acid (SDA) oils
- About 35% of SDA converts to EPA — a rate up to five times that of alpha-linolenic acid
- In the next 10 years, this may increase the sustainability quotient of these critical fatty acids and allow for inclusion in more foods
- However, addition of these sensitive fats may alter the stability of foods and have the unintended consequence of altering the bioavailability of micronutrients that depend on fat for absorption
- The implications are not fully known

Innovations in fats and oils (cont.)

- Omega-3 canola oil
 - Rich in EPA and DHA
 - Shelf stable
 - Expected to be available in the market by 2020
- Omega-3 stearidonic acid (SDA) oils
 - About 35% of SDA converts to EPA — a rate up to five times that of alpha-linolenic acid
 - In the next 10 years, this may increase the sustainability quotient of these critical fatty acids and allow for inclusion in more foods
 - However, addition of these sensitive fats may alter the stability of foods and have the unintended consequence of altering the bioavailability of micronutrients that depend on fat for absorption
 - The implications are not fully known

Unintended consequences of focus on a single nutrient (cont.)

- Sugars
 - May not reduce caloric intake, ingredient substitution may end up with the same/higher number of calories
 - May lead to higher intake of other macronutrients or food groups (e.g., solid fats, refined carbohydrates)
 - May lead to less palatability and perhaps lower consumption of some nutrient-dense foods (e.g., vegetables, breakfast cereals, yogurt, flavored milk, and cranberries)
 - Elimination of flavored milk in schools leading to reduction in milk consumption
 - Added sugars on the label – there is a potential to add to consumer confusion by providing too much information on the label and misleading consumers into thinking that added sugars have a unique health impact above and beyond total sugars.

Some additional thoughts…from a 40-year food science/food industry veteran

- Over 30 years of dietary advice have had minimal effect on obesity and other food related diseases in U.S.
- Focus on single nutrients and “avoiding x” often leads to higher consumption of other macronutrients of concern.
- Consumers may respond better to messaging on what to consume more of, e.g.:
 - More complex carbohydrates and fiber vs. sugars
 - Diet vs. sugar-sweetened beverages
 - More potassium than sodium/salt
 - More MUFA than SFA

Summary

- Food science operates across a complex farm to fork system transforming raw food materials and ingredients into safe, nutritive, palatable, and affordable foods.
- Food technologists strive to help Americans achieve the dietary guidelines recommendations and improve human health.
- Food industry efforts have been successful in reducing calories, sodium, sugars, saturated fats, trans fat from foods while also increasing dietary fiber, and other micronutrients of concern.
- It may be productive to educate consumers on the nutrient contributions of various foods so they can make informed choices based on available food options rather than recommend limiting processed foods in their diets.

References (cont.)

References