Appendix E-2.37: Evidence Portfolio

Part D. Chapter 5: Food Sustainability and Safety

What is the relationship between population-level dietary patterns and food sustainability and related food security?

Table of Contents

Conclusion Statement/Grade	1
Key Findings	1
Methodology	2
Description of the Evidence	2
Evidence Synthesis	4
Table 1. Summary of Studies on Dietary Patterns and Sustainability	9
References	20
Supplementary Material: Food Components	22
Supplementary Material: Search Plan & Results	28

Conclusion Statement: Consistent evidence indicates that, in general, a dietary pattern that is higher in plant-based foods, such as vegetables, fruits, whole grains, legumes, nuts, and seeds, and lower in animal-based foods is more health promoting and is associated with lesser environmental impact (GHG emissions and energy, land, and water use) than is the current average U.S. diet. A diet that is more environmentally sustainable than the average U.S. diet can be achieved without excluding any food groups. The evidence consists primarily of Life Cycle Assessment (LCA) modeling studies or land-use studies from highly developed countries, including the United States.

DGAC Grade: Moderate

Key Findings

- The studies were consistent in showing that higher consumption of animal-based foods was associated with a greater impact on the environment and higher consumption of plant-based foods was associated with lower impact.
- The studies were consistent in showing that dietary patterns that promote health also promote sustainability.
- The studies were consistent in showing that healthier dietary patterns that adhered to dietary guidelines were more environmentally sustainable than diets typically consumed by the respective populations.
- The evidence supports that a sustainable diet can be achieved by following dietary guidance in the U.S. and national dietary guidance in other countries, without eliminating any food groups completely.
- The evidence supports the consumption of current dietary guidelines by increasing consumption of plantbased foods and modestly decreasing animal-based foods.
- Limited evidence showed that just lowering the snacks/sweets component of a dietary pattern benefits health and improves the environmental footprint.

- Overall, there was agreement across the studies regarding environmental footprints of different dietary patterns, despite varied methods of assessing environmental impact and differences in components of environmental impact assessed, e.g. GHG emissions or land use.
- There was limited and inconsistent evidence to indicate whether sustainable diets were more or less expensive than typically consumed diets in some locations.

Methodology

This topic is novel for a DGAC review and involves an emerging area of scientific investigation that is not readily addressed by study designs such as randomized controlled trials. The state-of-the-art of the literature related to sustainable diets and dietary patterns involves a unique combination of food pattern modeling, Life Cycle Assessment (LCA) methodology (examines all processes in the life cycle of each food component - from farm to plate to waste), and determination of the environmental outcomes of the full LCA inventory. Because of the unique nature of these studies, a modified NEL systematic review was conducted for the question on dietary patterns and sustainability. Databases included PubMed, Cochrane, Navigator, and Embase and the search covered from January 2000 to March 2014. For this topic and question, it was necessary to use different methods from those described in an original NEL protocol because not all methods in the protocol could be applied. This is sometimes necessary, according to the Cochrane Collaboration, but requires that methods from the original protocol that could not be implemented in the current review be summarized (Higgins 2011). In the standard NEL six-step protocol, step 3 to extract data and assess the risk of bias was modified. A new data extraction grid was developed with emphasis on modeling studies, LCA methodology, and environmental outcomes. The LCA is a standardized methodological framework for assessing the environmental impact (or load) attributable to the life cycle of a food product. The customized grid was then used by NEL abstractors to extract data from the included articles. In addition, NEL abstractors used a different tool to assess individual study quality or risk of bias, not the NEL Bias Assessment Tool (BAT). This alternative tool, the Critical Appraisal Checklist used by the British Medical Journal, was appropriate for studies that used a modeling design. This checklist assesses studies that use modeling to extrapolate progression of clinical outcomes, transform final outcomes from intermediate measures, examine relation between inputs and outputs to apportion resource use, and extrapolate findings from one clinical setting or population to another. To attain a high score, studies must report the variables that have been modeled rather than directly observed; what additional variables have been included or excluded; what statistical relations have been assumed; and what evidence supports these assumptions (Drummond 1996; Eddy 1985; Stevenson 2012). The checklist included key components of the British Medical Journal checklist for economic evaluations, together with the Eddy checklist on mathematical models. This Critical Appraisal Checklist was reviewed and tested for applicability by two sustainability experts who served as consultants to the DGAC.

Description of the Evidence

A total of 15 studies met the inclusion criteria for this systematic review. The body of evidence consisted primarily of dietary pattern modeling studies that assessed related environmental outcomes. These studies were conducted between the years 2003 and 2014 in the US (Pimentel & Pimental, 2003, Peters 2014), the UK (Aston 2012, Macdiarmid 2012, Scarborough 2012), Germany (Meier & Christen 2013), the Netherlands (van Doreen 2014), France (Vieux 2013), Spain (Sáez-Almendros

2013), Italy (Baroni 2007), Australia (Barosh 2014, Hendrie 2014), Brazil (de Carvalho 2013), New Zealand (Wilson 2013), and worldwide (Pradhan 2013). Dietary patterns that were examined included vegetarian, lacto-ovo vegetarian, and vegan dietary patterns; the average and dietary guidelinesrelated dietary patterns of respective countries examined: Mediterranean-style dietary patterns: and sustainable diets. The most frequent comparison diet was the average dietary pattern of the country, although numerous studies made additional comparisons across many of the above dietary patterns. Another approach was to examine diet "scenarios" that modeled different percentage replacements of meat and dairy foods with plant-based foods. The modeling studies used cross-sectional assessment of dietary intake from national nutrition surveys of representative adult populations: for example, the British National Diet and Nutrition Survey (NDNS) from studies in the UK (Aston 2012; Macdiarmid 2012), the National Nutrition Surveys (NNS) in Germany (Meier & Christen 2013), or the Australian National Nutrition Survey (Hendrie 2014) were used to determine the observed average dietary patterns. The average dietary patterns were then compared with other modeled dietary patterns, such as vegetarian or Mediterranean- style patterns, as described in detail below. All of the countries were highly developed countries with dietary guidelines and, therefore, generalizable to the U.S. population. The study quality for the body of evidence ranged from scores of 7/12 to 12/12 (indicating the evidence was of high quality) using the modified critical appraisal checklist.

Health outcomes associated with the dietary patterns were most often documented based on adherence to dietary guidelines-related patterns, variations on vegetarian dietary patterns, or Mediterranean-style dietary patterns. Diet quality was assessed in some studies using an a priori index, such as the Healthy Eating Index (HEI) or the WHO Index. In some studies, health outcomes also were modeled. For example Scarborough et al. used the DIETRON model to estimate deaths delayed or averted for each diet pattern. One study assessed the synergy between health and sustainability scores using the WHO Index and the LCA sustainability score to assess combined nutritional and ecological value (van Dooren 2014).

The environmental impacts that were most commonly modeled were GHG emissions and use of resources such as agricultural land, energy, and water. In many studies, the environmental impact for each food/food category was obtained using the LCA method. The LCA is a standardized methodological framework for assessing the environmental impact (or load) attributable to the life cycle of a food product. The life cycle for a food typically includes agricultural production, processing and packaging, transportation, retail, use, and waste disposal. An inventory of all stages of the life cycle is determined for each food product and a "weight" or number of points is then attributed to each food or food category, based on environmental impacts such as resource extraction, land use, and relevant emissions. These environmental impact results can be translated into measures of damage done to human health, ecosystem quality, and energy resources using programs such as Eco-Indicator (Goedkoop 2000). In addition to the health assessment approaches listed above, some studies used LCA analysis with a standardized approach to determine damages from GHG emissions and use of resources; these damage outcomes included human health as an environmental damage component, such as the number and duration of diseases and life years lost due to premature death from environmental causes.

Few studies assessed food security. These studies assessed food security in terms of the cost difference between an average dietary pattern for the country studied and a sustainable dietary pattern

for that population (Barosh 2014, Macdiarmid 2012, Wilson 2013). The basic food basket concept was used in some studies, representing household costs for a two-adult/two-child household.

Evidence Synthesis Themes and Key Findings

Identified Dietary Patterns and Health and Sustainability Outcomes

Vegetarian and Meat-based Diets

Several studies examined variations on vegetarian diets, or a spectrum from vegan to omnivorous dietary patterns, and associated environmental outcomes (Aston 2012; Baroni 2007; de Carvalho 2013; Peters 2007). Peters et al. examined 42 different dietary patterns and land use in New York, with patterns ranging from low-fat, lacto-ovo vegetarian diets to high fat, meat-rich omnivorous diets; across this range, the diets met U.S. dietary guidelines when possible.⁴¹ They found that, overall, increasing meat in the diet increased per capita land requirements; however, increasing total dietary fat content of low-meat diets (i.e. vegetarian alternatives) increased the land requirements compared to high-meat diets. In other words, although meat increased land requirements, diets including meat could feed more people than some higher fat vegetarian-style diets. Aston et al. assessed a pattern that was modeled on a feasible UK population in which the proportion of vegetarians in the survey was doubled, and the remainder adopted a diet pattern consistent with the lowest category of red and processed meat (RPM) consumers. They found the combination of low RPM + vegetarian diet had health benefits of lowering the risk of diabetes and colorectal cancer, determined from risk relationships for RPM and CHD, diabetes, and colorectal cancer from published meta-analyses. Furthermore, the expected reduction in GHG for this diet was \sim 3 percent of current total carbon dioxide (CO₂) emissions for agriculture. De Carvalho et al. also examined a high RPM dietary pattern with diet quality assessed using the Brazilian Healthy Eating Index. They found that excessive meat intake was associated not only with poorer diet quality but also with increased projected GHG emissions (~ 4 percent total CO₂ emitted by agriculture). Taken together, the results on RPM intake indicate that reduced consumption is expected to improve some health outcomes and decrease GHG emissions, as well as land use compared to low-fat, vegetarian-style diets. Baroni et al. examined vegan, vegetarian, and omnivorous diets, both organically and conventionally grown, and found that the organically grown vegan diet had the most potential health benefits; whereas, the conventionally grown average Italian diet had the least. The organically grown vegan diet also had the lowest estimated impact on resources and ecosystem quality, and the average Italian diet had the greatest projected impact. Beef was the single food with the greatest projected impact on the environment; other foods estimated to have high impact included cheese, milk, and fish.

Vegetarian diets, dietary guidelines-related diets, and Mediterranean-style diets were variously compared with the average dietary patterns in selected countries (Hendrie 2014; Meier & Christen 2013; Pimentel & Pimental 2003; van Dooren 2014). Overall, the estimated greater environmental benefits, including reduced projected GHG emissions and land use, resulted from vegan, lacto-ovo vegetarian, and pesco-vegetarian diets, as well as dietary guidelines-related and Mediterranean-style dietary patterns. These diets had higher overall predicted health scores than the average diet patterns. Moreover, for the most part, the high health scores of these dietary patterns were paralleled by high

combined estimated sustainability scores. According to van Doreen et al., the synergy measured across vegetarian, Mediterranean-style, and dietary guidelines-related scores could be explained by a reduction in consumption of meat, dairy, extras (i.e., snacks and sweets), and beverages, as well as a reduction in overall food consumption.

Mediterranean-Style Dietary Patterns

The Mediterranean-style dietary pattern was examined in both Mediterranean and non-Mediterranean countries (Saez-Almendros 2013; van Dooren 2014). In all cases, adherence to a Mediterranean-style dietary pattern—compared to usual intake—reduced the environmental footprint, including improved GHG emissions, agricultural land use, and energy and water consumption. Both studies limited either red and processed meat (Saez-Almendros 2013) or meat and poultry (van Dooren 2014) to less than 1 serving per week, and increased fish intake. The authors concluded that adherence to a Mediterranean-style dietary pattern would make a significant contribution to increasing food sustainability, as well as increasing the health benefits that are well-documented for this type of diet.

Diet Scenarios

Other studies examined different diet "scenarios" that generally replaced animal foods in various ways with plant foods (Scarborough 2012; Pradham 2013; Vieux 2013). Scarborough et al. found that a diet with 50 percent reduced total meat and dairy replaced by fruit, vegetables, and cereals contributed the most to estimated reduced risk of total mortality and also had the largest potential positive environmental impact. This diet scenario increased fruit and vegetable consumption by 63 percent and decreased saturated fat and salt consumption; micronutrient intake was generally similar with the exception of a drop in vitamin B₁₂.

Pradham et al. examined 16 global dietary patterns that differed by food and energy content, grouped into four categories with per capita intake of low, moderate, high, and very high kcal diets. They assessed the relationship of these patterns to GHG emissions. Low-energy diets had < 2,100 kcal/cap/day and were composed of more than 50 percent cereals or more than 70 percent starchy roots, cereals, and pulses. Animal products were minor in this group (<10 percent). Moderate, high, and very high energy diets had 2,100-2,400, 2,400-2,800, and > 2,800 kcal/cap/day, respectively. Very high calorie diets had high amounts of meat and alcoholic beverages. Overall, very high calorie diets, common in the developed world, exhibited high total per capita CO_{2eq} emissions due to high carbon intensity and high intake of animal products; the low-energy diets, on the other hand, had the lowest total per capita CO_{2eq} emissions.

Lastly, Vieux et al. examined dietary patterns with different indicators of nutritional quality and found that despite containing large amounts of plant foods, not all diets of the highest nutritional quality were those with the lowest GHG emissions. For this study, the diet pattern was assessed by using nutrient-based indicators; high quality diets had energy density below the median, mean adequacy ratio above the median, and a mean excess ratio (percentage of maximum recommended for nutrients that should be limited – saturated fat, sodium, and free sugars) below the median. Four diet patterns were identified based on compliance with these properties to generate one high quality diet, two intermediate quality diets, and one low quality diet. In this study, the high quality diets had higher GHG emissions than did the low quality diets. Regarding the food groups, a higher consumption of starches, sweets and salted snacks, and fats was associated with lower diet-related GHG emissions and an increased intake of fruit

and vegetables, was associated with increased diet-related GHG emissions. However, the strongest positive association with GHG emissions was still for the ruminant meat group. Overall, this study used a different approach from the other studies in this review, as nutritional quality determined the formation of dietary pattern categories.

Sustainable Diets and Costs

Three studies examined sustainable diets and related costs (Barosh 2014; Macdiarmid 2012; Wilson 2013). Barosh et al. examined food availability and cost of a health and sustainability (H&S) food basket, developed according to the principles of the Australian dietary guidelines as well as environmental impact. The food basket approach is a commonly used method for assessing and monitoring food availability and cost. The typical food basket was based on average weekly food purchases of a reference household made up of two adults and two children. For the H&S basket, food choices were based on health principles and environmental impact. The H&S basket was compared to the typical Australian basket and it was determined that the cost of the H&S basket was more than the typical basket in five socioeconomic areas; the most disadvantaged spent 30 percent more for the H&S basket. The authors concluded that the most disadvantaged groups at both neighborhood and household levels experienced the greatest inequality in accessing an affordable H&S basket. Macdiarmid et al. examined a sustainable diet (met all energy and nutrient needs and maximally decreased GHG emissions), a "sustainable with acceptability constraints" diet (added foods commonly consumed in the UK; met energy, nutrient, and fish recommendations as well as recommended minimum intakes for fruits and vegetables and did not exceed the maximum recommended for red and processed meat), and the average UK diet. They found that the sustainable diet that was generated would decrease GHG emissions from primary production (up to distribution) by 90 percent, but consisted of only seven foods. The acceptability constraints diet included 52 foods and was projected to reduce GHG emissions by 36 percent. This diet included meat and dairy but less than the average UK diet. The cost of the sustainable + acceptability diet was comparable to that of the average UK diet. These results showed that a sustainable diet that meets dietary requirements and has lower GHG can be achieved without eliminating meat or dairy products completely, or increasing the cost to the consumer. Lastly, Wilson et al. examined 16 dietary patterns modeled to determine which patterns would minimize estimated risk of chronic disease, cost, and GHG emissions. These patterns included low-cost and low-cost + low GHG diet patterns, as well as healthy patterns with high vegetable intakes including Mediterranean or Asian patterns, as well as the average New Zealand pattern. The authors found that diets that aimed to minimize cost and estimated GHG emissions also had health advantages, such as the simplified low-cost Mediterranean-style and simplified Asian-style diets, both of which would lower cardiovascular disease and cancer risk, compared to the average New Zealand diet. However, dietary variety was limited and further optimization to lower GHG emissions increased cost.

Overall, the studies were consistent in showing that higher consumption of animal-based foods was associated with higher estimated environmental impact, whereas consumption of more plant-based foods as part of a lower meat-based or vegetarian-style dietary pattern was associated with estimated lower environmental impact compared to higher meat or non-plant-based dietary patterns. Related to this, the total energy content of the diet was also associated with estimated environmental impact and higher energy diets had a larger estimated impact. For example, for fossil fuel alone, one calorie from beef or milk requires 40 or 14 calories of fuel, respectively, whereas one calorie from grains can be

obtained from 2.2 calories of fuel (Pimental & Pimental 2003). Additionally, the evidence showed that dietary patterns that promote health also promote sustainability; dietary patterns that adhered to dietary guidelines were more environmentally sustainable than the population's current average level of intake or pattern. Taken together, the studies agreed on the environmental impact of different dietary patterns, despite varied methods of assessing environmental impact and differences in components of environmental impact assessed (e.g. GHG emissions or land use). The evidence on whether sustainable diets were more or less expensive than typically consumed diets in some locations was limited and inconsistent.

Qualitative Assessment of the Collected Evidence:

Quality and Quantity

This was a reasonable body of consistent evidence with studies that directly addressed the question. The study quality for the body of evidence ranged from 7/12 to 12/12, using the critical appraisal checklist for economic evaluations (including key components of the British Medical Journal checklist for economic evaluations, together with the Eddy checklist on mathematical models (<u>NIHR Evaluation, Trials and Studies</u> <u>Coordinating Centre (UK)</u>).

Consistency

There was remarkable agreement between the fifteen studies regarding environmental footprints of different dietary patterns, despite varied methods and designs to answer the question.

Impact

The evidence supports Americans consuming the current Dietary Guidelines by increasing consumption of plant-based foods, modestly decreasing animal-based foods and decreasing excessive snacks/sweets. Promoting sustainable diets will contribute to food security for present and future generations by conserving valuable resources. Moving forward, care and attention will be needed to be sure that Americans have access to and can afford a sustainable pattern of eating.

Generalizability/External Validity

Studies were conducted in the US, the UK, Germany, the Netherlands, France, Spain, Italy, Australia, Brazil, and New Zealand. These are all high HDI countries with systems of national dietary guidance similar to the US. Most of the studies based their modeling on assumed average adult diets with average caloric intake to meet energy needs, i.e. general populations of healthy adults. Taken together, the evidence from the general healthy populations in the U.S. and primarily European countries is highly generalizable to the U.S. population.

Limitations

A limitation that was common to most of the studies was that health outcomes were not assessed in the available study, but were based on earlier work on specific dietary patterns, e.g. vegetarian, Mediterranean, Western, etc. There are also known limitations to the complex process of assessing the environmental impact of foods using the Life Cycle Assessments method.

Research Recommendations

1. Develop and test communication strategies to help motivate people of all ages to consume increasingly sustainable diets. This strategy will provide further rationale for the U.S. population to

Scientific Report of the 2015 Dietary Guidelines Advisory Committee

consume a dietary pattern closer to the Dietary Guidelines for Americans than is currently being consumed.

- 2. Develop and test systems to ensure that sustainable diets are affordable and available to all sectors of the population.
- 3. Develop more in-depth analysis of U.S. domestic dietary patterns and enhanced environmental sustainability with different production regimens for animal products, especially dairy and beef.
- 4. Develop updated analysis of environmental sustainability of dietary patterns with respect to fish consumption, nutrient profiles, and different production regimens (e.g. wild caught versus farm raised.

	Table 1. Sum	mary of Studies on	Dietary Patterns ar	d Sustainability	
Author, Year	Diet Exposure	Results	Results	Results	Summary of Findings
Study Design, Location	Exposure	Health Outcomes	Sustainability or Food Security	Food Components	
Aston et al., 2012 Modeling/ Data Analysis UK	 Reduced red & processed meat (RPM) dietary pattern Vegetarian Counterfactual (combination of lowest RPM + Vegetarian) RPM consumption from National Diet and Nutrition Survey of British Adults Counterfactual UK diet: vegetarians in the survey population doubled, and remainder adopted diet of lowest 5th RPM consumers 	Counterfactual diet: reduced risk from 3.2% (95% CI 1.9- 4.7) for diabetes in women to 12.2% (6.4-18.0) for colorectal cancer in men	Diet-related GHG decreased by 0.47 kg CO2- e/person/day (12%) to 3.96 kg CO2-e/ person/ day in men and 3.02 kg CO2- e/person/day in women For 2009 UK population of 61,792,000, this amounts to a total GHG reduction of 27.8 million tonnes/year (3% of current total)	Red meat accounted for 31% of dietary CO2-e emissions in men and 27% in women Processed meat accounted for an additional 10% and 8% in men and women, respectively (Habitual RPM 2.5X higher in top vs bottom 5 th)	Reduced consumption of RPM would result in multiple benefits to health and the environment
Baroni et al., 2007 Modeling/ Data Analysis Italy	 7 dietary patterns: Omni-Conv (omnivorous, conventional farming) Omni-Org (omnivorous, organic farming) Veg-Conv (vegetarian, conventional) Veg-Org (vegetarian, organic) Vegan-Conv (vegan, conventional) Vegan-Org (vegan, organic) Average Italian- Conv (ave. Italian diet, conventional) 	Ave impact (points): Health Omni-Conv - 0.46; Omni-Org - 0.20; Veg-Conv - 0.34; Veg-Org - 0.18; Vegan-Conv - 0.15; Vegan-Org - 0.04; Ave Italian - 1.06; From omnivorous diets: 15-18% of impact due to damage to respiration from inorganic chemicals	Ave impact (points): Resources Omni-Conv - 1.42; Omni-Org - 0.80; Veg-Conv - 0.88; Veg-Org - 0.59; Vegan-Conv - 0.54; Vegan-Org - 0.46; Ave Italian - 3.70; From omnivorous diets: 20-26% of impact due to fossil fuels 5-13% due to land use 41-46% due to water Ave impact (points): Ecosystem Omni-Conv - 0.27 Omni-Org - 0.27 Veg-Conv - 0.17 Veg-Org - 0.18 Vegan-Conv - 0.11 Vegan-Org - 0.07 Ave Italian - 0.65 From omnivorous diets: 3-4% of impact due to eutrophication process	Beef is the single food w/ greatest impact on environment Other high impacting foods were cheese, milk, and fish	Ave Italian-Conv diet had the greatest environmental impact The Vegan-Org diet had the lowest environmental impact Within the same method of production, a greater consumption of animal products translated to a greater impact on the environment Within the same dietary pattern, conventional production methods had a greater environmental impact than organic methods

Barosh et al., 2014 Cross- sectional survey of food availability & cost Australia	 Health & Sustainability (H&S) basket Typical basket Typical basket 2 food baskets (typical and sustainable H&S basket) developed for 2-adult/2-child household in 5 socio- economic districts,estimated food cost, food availability, food accessibility 	H&S basket 1 st - developed according to health principles of Australian Dietary Guidelines 2 nd - food items chosen w lower environ impact	Cost of H&S basket more than typical basket in 5 socio- economic areas Most disadvantaged spent more (30%) for H&S basket	NR	Most disadvantaged groups in the region, both at the neighborhood and household levels, experienced the greatest inequality in affordability of the H&S diet
de Carvalho et al., 2013 Cross- sectional health survey Brazil	Red & processed meat Study measured RPM intake in San Paulo, Brazil and assessed impact on diet quality and environment	Diet quality assessed using the Brazilian Healthy Eating Index Revised	GHG emissions from meat were estimated at 18,071,988 tons of CO ₂ equivalents, or 4% of total emitted by agriculture	81% of men and 58% of women consumed more meat than recommended of red and processed meat Diet quality was inversely associated with excessive meat intake in men	Excessive meat intake, associated with poorer diet quality, support initiatives and policies advising to reduce red and processed meat to recommended amounts as part of healthy and environmentally sustainable diet
Hendrie et al., 2014 Modeling/ Data Analysis/ Survey Australia	 4 dietary patterns: Average diet (average Australian diet); Average diet with minimal non-core foods (similar to average diet with minimal inclusion of energy-dense, processed non- core foods); Total diet (recommended dietary pattern consistent with Australian Dietary Guidelines); Foundation diet (recommended dietary pattern that meets the minimum nutrient and energy needs requirements for the population) 	Health benefits of adhering to Australian Dietary Guidelines Core foods = red meat, chicken, fish, eggs, breads & cereals, fruit, vegetables, dairy foods and unsat oils Non-core foods = snacks, soft drinks, coffee/tea, desserts/ sweets, processed meats, SFA, and alcohol	Highest GHG: Ave Australian diet -14.5 kg CO ₂ / person/d Lowest GHG: Foundation diet - 10.9 kg CO ₂ /person/d (~25% lower than ave diet) GHG from diets assessed using the input-output model of Australian economy (Australian Multi Regional Input- Output (MRIO) model)	Food groups with greatest contribution to diet-related GHG were red meat (8.0 kg CO ₂ /person/d) and energy-dense, nutrient poor "non-core" foods (3.9 kg CO ₂) Non-core foods accounted for 27% diet-related GHG	Reduction in non- core foods and consuming recommended servings of core foods are strategies to benefit population health and environment

Macdiarmid	3 dietary patterns:	Benefits from	GHG: sustainable	Meat in	A sustainable diet
et al 2012	Sustainable	dietary	diet gave 90%	sustainable w/	that meets dietary
Modeling/ Data Analysis UK	 Sustainable w/ Acceptability Constraints Average UK Iterative modeling to produce a diet that met dietary requirements while minimizing GHGEs Acceptability constraints based on average UK diet 7-d sample diet was generated to ensure diet was realistic and acceptable 	recommendations: Modeled for nutrient intake based on UK diet recommendations for women 19-50y, Constraints set for energy, macronutrients, and 6 micronutrients (iron, folate, B12, zinc, calcium, and sodium)	reduction in GHG, but only 7 foods Acceptability constraints gave 52 foods and reduced GHG 36%; diet included meat but less than average UK diet Diet cost: cost of Sustainable + acceptability diet was comparable to average UK cost	Acceptability diet was 60% of current intake for UK women and 48% of red meat intake Proportion of dairy was similar to current intakes, but lower in fat	requirements for health with lower GHG can be achieved without eliminating meat or dairy products or increasing the cost to the consumer

Meier &	6 dietary patterns:	Dietary guidelines	Environmental	In comparison to	Highest environmental
Christen,	 Ave German Diet 	and vegetarian/	impacts per capita	the dietary	impact changes
2013	 Ave German Diet 1985-89 	vegan related	CO ₂ emissions,	guidelines and	would be from the
2010		health benefits	t/y:	diets	vegan and lacto-ovo
Modeling/	 Ave German Diet 2006 		•1985-89 mean:	characterized by	vegetarian diets
Data Analysis	 German Dietary 		2.28;	increasing	rogotaliari aloto
	Guidelines Diet		•2006 mean: 2.05;	legumes,	The impact of
Germany	(D-A-CH)		•D-A-CH: 1.82;	nuts/seeds and	recommendations of
	Alternative		•UGB: 1.81;	vegetables,	UGB and D-A-CH
	recommendation		 vegetarian: 1.56; 	instead of meat,	ranked 3 rd and 4 th
	s w/ less meat,		•vegan: 0.96	butter, egg and	
	more legumes &		-	fish products (D-	All four diets achieved
	vegetables		NH ₃ emissions,	A-CH > UGB >	significant reductions
	(UGB)		kg/y:	vegetarian >	compared with the
	Lacto-ovo		•1985-89 mean:	vegan) could	average intake in
	vegetarian		7.7;	reduce impact of	2006
	 Vegan 		•2006 mean: 6.5;	diet if more in line	
	-		•D-A-CH: 5.1;	with guidelines	Changes since 1985-
			•UGB: 4.7;		89 are largely due to
			 vegetarian: 3.8; vegan: 0.7 	GHG emissions	changes in diet
				and phosphorus use related to	
			Land use, m ² /y:	dairy are	
			•1985-89 mean:	increasing, while	
			2,444;	those related to	
			•2006 mean:	meat are declining	
			2,098;		
			•D-A-CH: 1,786;	Ammonia	
			•UGB: 1,740;	emissions and	
			 vegetarian: 1,527; 	land use also	
			•vegan: 1,052	largely driven by	
			Blue water** use,	meat and dairy,	
			m ³ /y:	and would be	
			•1985-89 mean:	reduced w/ shift to	
			24.9; •2006 mean: 28.4;	vegan diet	
			•D-A-CH: 20.9;	Increased blue	
			•UGB: 20.8;	water use since	
			•vegetarian: 52.5;	1985-89 is	
			•vegan: 58.8	associated w/	
				higher fruits, nuts,	
			Phosphorus use,	and seeds	
			kg/y:		
			•1985-89 mean:		
			7.7;		
			•2006 mean: 6.5;		
			•D-A-CH: 5.7;		
			•UGB: 5.6;		
			 vegetarian: 4.5; vegan: 2.4 		
			·vcyan. 2.4		
			Primary Energy		
			use, GJ/y:		
			•1985-89 mean:		
			14.0;		
			•2006 mean: 13.5;		
			•D-A-CH: 12.5;		
			•UGB: 12.9;		
			 vegetarian: 11.2; 		
			•vegan: 9.4		

Peters et al.,	42 dietary patterns	All diets met USDA	Annual per capita	Meat was most	Increasing meat in
2007	varying in total fat and	Food Guide	land	land-intensive	the diet increased
	meat servings:	Pyramid where	requirements:	food, followed by	per capita land
Modeling/	Range of food	possible	ranged from 0.18	eggs, dairy, fruits,	requirements, while
Data Analysis	patterns—from		ha (0g meat, 52g	oilseeds,	increasing total
New York	low-fat, lacto-		fat) to 0.86 ha (381g meat, 52g	vegetables, beans, then	dietary fat increased the land
State	vegetarian to high		fat);	grains, men	requirements of low
Olaic	fat, meat-rich		meat was the	grains	meat diets but
	omnivorous		primary driver of	(Ruminant meat	reduced the land
	 7 guantities of 		increasing land	and milk required	needed for high meat
	meat and eggs-		use;	less land devoted	diets
	0 to 381 g/d and		increasing dietary	to annual crop	
	6 levels of fat-		intake of fat	production	These results
	20 to 45% of		increased land	relative to other	support the assertion
	energy		requirements for	meats)	that diet should be considered in its
	 2308 kcal/d 		low-meat diets but reduced land		entirety when
	 Excludes foods 		requirements for		assessing
	not produced in NY state		high-meat diets;		environmental impact
	 Assumes 		97.2% of the		
	seasonal		variability between		
	limitations on		diets was		
	fruits & veg		attributable to the		
	5		quantity of meat in		
			the diet		
			Carrying		
			capacity:		
			ranged from 6.08		
			million persons (0g		
			meat, 52g fat) to 2.04 million		
			persons (381g		
			meat, 52g fat);		
			lower meat diets		
			generally		
			supported more		
			people, but as fats		
			increased, there		
			was less difference		
			between diets with different meat		
			levels:		
			87.2% of the		
			variability between		
			diets was		
			attributable to the		
			quantity of meat in		
			the diet		

Pimentel & Pimentel, 2003	2 energy-equivalent diets: • Lacto-ovo vegetarian	Health benefits of lacto-ovo vegetarian diet	Cropland per capita needed for production: meat- based: 0.5 ha;	Fossil energy required to produce 1 kcal of animal protein,	Meat-based diet requires more energy, land, and water resources,
Modeling/ Data Analysis	Average US (Meat based diet)		vegetarian: 0.4 ha Producing 1 kg of animal protein	kcal: lamb: 57; beef: 40; eggs: 39;swine:14; dairy	making the lactoovovegetarian diet more sustainable than the current
US	Meat-based diet based on food balance sheets for US from FAOSTAT Composition of the lactoovovegetarian diet estimated by replacing meat and fish calories by proportionately increasing other foods consumed, except sugar and sweeteners, fats, and vegetable oils		requires 100 times more water than producing 1 kg of grain protein	(milk): 14; turkeys: 10; broilers: 4 Grain/forage required to produce 1 kg of animal product, kg: lamb: 21/30; beef: 13/30; eggs: 11/0; swine: 5.9/0; turkeys: 3.8/0; broilers: 2.3/0; dairy (milk): 0.7/1 Red meat generally requires more resources to produce than non- meat animal proteins (eggs, milk)	average US diet

Dradham at	10 distants of the sec	NB	I link an arts dista		Law adama Pata
Pradham et	16 dietary patterns,	NR	High-calorie diets	Non-CO2 GHGE	Low-calorie diets
al., 2013	grouped according to		required high per-	intensities were	showed a similar
	energy content: low-		capita energy	higher for	emission burden to
Modeling/	calorie (patterns 1-3),		inputs (1,800-3,500	livestock (1.44-	moderate- and high-
Data Analysis	moderate-calorie		kcal/d)	13.06 g	calorie diets, which
	(patterns 4-8), high-			CO2eq/kcal) than	could be explained
Global	calorie (patterns 9-		Per-capita fossil-	for crops (0.31-	by a less efficient
	11), and very high-		fuel related GHGEs	1.81 g	calorie production
	calorie (patterns 12-		ranged from 0.64	CO2eq/kcal),	per unit of GHGEs in
	16). Within each		to 1.35 kg CO2eq/d	indicating that a	developing countries,
	group, dietary patterns		for very high-	dietary shift	which were mainly
	differed in the		calorie diets, to	towards	associated with low-
	composition of food		between 0.03 and	consuming fewer	calorie diets
	groups		0.05 kg CO2eq/d	animal products	
	5		for low-calorie diets	would help reduce	Very high-calorie
	Dietary patterns were			GHGEs	diets were prevalent
	characterized using		Non-CO2 GHGEs		in developed
	global time series data		were generally high		countries and were
	on food consumption		for low- and		associated with high
	and composition per		moderate-calorie		total per-capita
	country from		diets, and resulted		GHGEs due to high
	FAOSTAT during		in high total		carbon intensity and
	1961-2007		GHGEs for those		high intake of animal
			patterns		products
	Data included 11 food				
	groups: animal		For high- and very		
	products, cereals,		high-calorie		
	pulses, starchy roots,		patterns, non-CO2		
	oilcrops, vegetable		GHGE intensities		
	oils, vegetables, fruits,		for crop and		
	sugar-sweeteners,		livestock were		
	sugarcrops, and		smaller, indicating		
	alcoholic beverages		high-energy input		
	alconolic bevelagee		and management		
			strategies make		
			agriculture more		
			productive in		
			developed		
			countries, which		
			were generally		
			associated with		
			higher-calorie		
			patterns		
			pattorno		
			Total GHGEs only		
			slightly higher for		
			high- and very		
			high-calorie diets		
			(2.48-6.10 kg		
			CO2eq/d)		
			compared to low-		
			and moderate-		
			calorie diets (1.43-		
		l	4.48 kg CO2eq/d)		

2013• Mediterranean (MDP)Pattern (MDP)MDP: 8,365; SCP- FB: 19,874; SCP- CS: 12,342; WDP: 33,162; Current real pressure: 15,400significantly to increasing diet pattern footprints(72%), agricultura land use (58%) art energy consumption dairy had highest consumption. dairy had highest consumptionSpain• Current Spanish w/ consumption surveys (SCP- CS)• Western (WDP)Energy consumption, TJ/yEnergy consumption dairy had highest consumption, TJ/yAdherence to a W would increase all diets, followed by maet for WDP, fish for SCP, and vegetables for MDPAdherence to a W would increase all diets, followed by maet for WDP, fish for SCP, and vegetables for MDPSpanish dietary pattern was estimated for doblance sheets for 2007, and also independently from the Household Consumption surveys of the Spanish Ministry of Agriculture, Food and EnvironmentPattern (MDP)Water consumption consumption consumption consumption consumption SCP-CS: 72,758;Water contributionConsumption the Power of the Spanish Ministry of Agriculture, Food and EnvironmentPattern food for 2007, and also independently from the Household Consumption SurveysPattern food for WDP and SPC, while dairy most for MDPWater consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentPattern food for 2007, and also independently from the Household Consumption SurveysGHG emissions; meat contributed most for WDP and SPC, while dairy most for MDPWater consumption the Household<	Sáez-	4 Diets (comparable	Documented health	Agricultural land	Animal products	The MDP in Spain
Model/ Data Analysis(MDP) Current Spanish w/ food balance (SCP-FB)FB: 19,874; SCP- CS: 12,342; WDP: 33,162;increasing diet pattern footprintsland use (58%) ar energy consumption (52%), and water consumption (33%)Spain• Current Spanish w/ consumption surveys (SCP- CS)• Current real pressure: 15,400Energy consumption; dairy had highest consumption; dairy had highest consumption for all diets, followed by meat for WDP, for SCP-RS: 285,968; Water consumption; for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentFB: 19,874; SCP- SCP-RS: 285,968; WATER Current real pressure: 229,178 Water consumption, km ³ /yland use (58%) ar energy consumption; dairy had highest consumption for all dietary pattern was estimated fror 2007, and also independently from the Household Consumption Surveysland use (58%) ar energy consumption; dairy and wegetable oils water consumption; dairy and wegetable oils water real pressure: 19.4land use (58%) ar energy consumption; dairy had highest consumption; dairy and wegetable oils water a significant consumption; dairy and wegetable oils water consumption contribution to increasing both fo sustainability and wegetable oils water contribution curre real pressure: 19.4land use (58%) ar energy consumption; dairy and wegetable oils woold increasing bit for sustainability and mate contributed most for WDPModifier dairy most for WDP: 35,510; SCP-CS: 72,758; MDPFB: 19,7; SCP-CS: and SPC, while dairy most for MDP						would reduce GHG
Model/ Data AnalysisCurrent Spanish w/ food balance (SCP-FB)CS: 12,342; WDP: 33,162; Current real pressure: 15,400 Energy consumption surveys (SCP- CS)pattern footprintsenergy consumption (52%), and water consumption: dairy had highest consumption for all diets, followed by meat for WDP, fish for SCP, and vegetables for Was obtained from the new MDP pyramidPattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentCS: 12,342; WDP: 33,162; Current real pressure: 15,400 Energy consumption; diaty had highest consumption for all diets, followed by meat for WDP, fish for SCP, and vegetables for MDP: 239,042; SCP-FB: 439,829; Stanish dietary pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentCS: 12,342; WDP: 33,162; Current real pressure: 15,400 Energy Current real pressure: 19,4 GHG emissions; meat contributed most for WDP and SPC, while dairy most for MDP: 35,510; SCP-CS: 72,758; MDPpattern was for MDP and SPC, while dairy most for MDP	2013		Pattern (MDP)			
Data AnalysisWi food balance (SCP-FB)33,162; Current Spanish w/ consumption surveys (SCP- CS)33,162; Current real pressure: 15,400(52%), and water consumption dairy had highest consumption for all diets, followed by meat for WDP, fish for SCP, and wegetables for WDP pyramidAdherence to a W would increase all these between 12 72%Mediterranean DP was obtained from the new MDP pyramidMediterranean DP was obtained from the new MDP pyramidScP-CS: 285,968; WDP: 611,314; Current real pressure: 229,178Water consumption; dairy had highest ontribution for all diets, followed by meat for WDP, fish for SCP, and wegetables for WDP: 611,314; Current real pressure: 229,178Adherence to a W would increase all these between 12 72%Spanish dietary pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentMinistry of Agriculture, Food and EnvironmentGHG emissions; meat contributed most for WDP and SPC, while dairy most for MDP					0	
SpainCurrent Spanish w' consumption surveys (SCP- CS)Current real pressure: 15,400 Energy consumption, surveys (SCP- CS)Energy consumption, dairy had highest consumption, diets, followed by meat for WDP, fish for SCP, and vegetables for MDP pyramidCurrent real pressure: 229,178 Water consumption, the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentEnergy consumption, dairy had highest consumption, we consumption for all diets, followed by meat for WDP, fish for SCP, and vegetables for dairy had highest consumption (align and we getable oils both had the highest consumptionConsumption (339) Adherence to a W would increase all these between 12 72%Spanish dietary pattern was estimated for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentCurrent real pressure: 19.4 GHG emissions, Gg Co_req/y MDP: 32.502; CP-FB: 125,913; SCP-FB: 125,913; SCP-FB: 125,913; SCP-FS: 127.758;Consumption (339) Adherence to a W would increase all the spanish meat contributed most for WDP					pattern footprints	
SpainCurrent Spanish w/ consumption surveys (SCP- CS)pressure: 15,400 Energy consumption, TJ/y MDP: 239,042; SCP-FB: 493,829; SCP-FB: 493,829; SCP-FB: 493,829; SCP-FB: 493,829; SCP-FB: 493,829; SCP-FB: 493,829; SCP-S: 285,968; WDP: 611,314; Current real pressure: 229,178 Water consumption, dairy and dietary pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentModel erranean dietary SCP-FB: 493,829; SCP-FB: 493,829; SCP-SS: 285,968; WDP: 611,314; Current real pressure: 229,178 Water consumption, dairy and vegetable oils both had the highest contribution direading and well-known benefit for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentCurrent real pressure: 19.4 GHG emissions, Gg C0_eq/y MDP: 35,510; scP-CS: 72,758;Consumption: dairy and well-known benefit for WDP and SPC, while dairy most for MDP	Data Analysis				_	
Energy surveys (SCP- CS)dairy had highest consumption, TJ/yAdherence to a W would increase all diets, followed by meat for WDP,• Western (WDP)MDP: 239,042; SCP-FB: 439,829; SCP-CS: 285,968; Was obtained from the new MDP pyramidMDP: 239,042; fish for SCP, and vegetables for MDP: 611,314; Current real pressure: 229,178Adherence to a W would increase all these between 12 72%Spanish dietary pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentMDPAdherence to a W would increase all these between 12 72%Consumption group the Household EnvironmentConsumption, (airy and (current real pressure: 19.4 (gr Co2eq/y) MDP: 35,510; SCP-CS: 72,758; MDPMater (Current real pressure: 19.4 (GHG emissions; meat contribution most for WDP and SPC, while dairy most for MDP: 35,510;Adherence to a W would increase all tiese between 12 meat for WDP and SPC, while dairy most for MDP: 35,510;						consumption (33%)
surveys (SCP- CS)consumption, TJ/ycontribution for all diets, followed by meat for WDP,would increase all these between 12 72%• Western (WDP)MDP: 239,042; SCP-FB: 493,829; SCP-CS: 285,968; Was obtained from the new MDP pyramidcontribution for all diets, followed by meat for WDP, fish for SCP, and vegetables for MDPdiets, followed by meat for WDP, fish for SCP, and vegetables for MDPAdherence to a Mediterranean dietary pattern wo make a significant consumption, dairy and vegetable oilsAdherence to a Mediterranean dietary pattern wo make a significant consumption: dairy and vegetable oilsAdherence to a Mediterranean dietary pattern wo make a significant consumption: dairy and vegetable oilsSpanish dietary pattern was estimated for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentNone suppressure: 19.4 GHG emissions; Gg C02eq/y MDP: 35,510; SCP-CS: 72,758;GHG emissions: meat contributed most for WDP and SPC, while dairy most for MDP	Spain					
City of boldTJ/ydiets, followed by meat for WDP, fish for SCP, and vegetables for MDP: 239,042; SCP-FB: 493,829; SCP-CS: 285,968; Was obtained from the new MDP pyramidthese between 12 72%Mediterranean DP was obtained from the new MDP pyramidMDP: 611,314; Current real pressure: 229,178MDPAdherence to a Mediterranean dietary pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentTJ/y MDP: 35,510; SCP-CS: 72,758;diets, followed by meat for WDP, fish for SCP, and vegetables for MDP: 35,510; SCP-CS: 72,758;these between 12 T2%Moditerranean DP was obtained from the new MDP pyramidMDP: 35,510; SCP-CS: 72,758;diets, followed by meat for WDP dietary pattern was vegetable oils both had the meat contributed most for WDP and SPC, while dairy most for MDP: 35,510; SCP-CS: 72,758;these between 12 T2%						
MDP: 239,042; SCP-FB: 493,829; SCP-CS: 285,968; WDP: 611,314; Current real pressure: 229,178meat for WDP, fish for SCP, and vegetables for MDP72%Adherence to a Mediterranean mew MDP pyramidCurrent real pressure: 229,178Mater consumption, dairy and vegetable oils both had the highest contributionAdherence to a Mediterranean dietary pattern was easing the FAOSTAT for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentMDP: 35,510; SCP-CS: 72,758; MDPGHG emissions: meat for WDP dairy and sustainability and well-known benefit for 2007, while dairy and sustainability and well-known benefit for public health						
SCP-FB: 493,829; Wasterfish for SCP, and vegetables for MDPAdherence to a Mediterranean dietary pattern was ostantability and pressure: 229,178Spanish dietary pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentSCP-FB: 493,829; SCP-CS: 285,968; WDP: 611,314; Current real pressure: 229,178fish for SCP, and vegetables for MDPAdherence to a Mediterranean dietary pattern wo make a significant consumption; dairy and vegetable oils both had the highest contributionAdherence to a Mediterranean dietary pattern wo make a significant consumption; dairy and vegetable oils both had the highest contributionGHG emissions, Food and EnvironmentGHG emissions; meat contributed most for WDP and SPC, while dairy most for MDP: 35,510; SCP-CS: 72,758; MDPGHG emissions; meat contributed most for WDP and SPC, while dairy most for MDP		CS)		-		
Mediterranean DP was obtained from the new MDP pyramidSCP-CS: 285,968; WDP: 611,314; Current real pressure: 229,178vegetables for MDPAdherence to a Mediterranean dietary pattern was make a significant consumption, km³/yAdherence to a Mediterranean dietary pattern was make a significant consumption: dairy and vegetable oils both had the highest contributionAdherence to a Mediterranean dietary pattern was make a significant consumption: dairy and vegetable oils both had the highest contributionAdherence to a Mediterranean dietary pattern wo make a significant consumption: dairy and vegetable oils both had the highest contributionAdherence to a Mediterranean dietary pattern wo make a significant consumption: dairy and well-known benefit for public healthAdherence to a Mediterranean dietary pattern wo make a significant consumption: dairy and well-known benefit for public healthMore 1000000000000000000000000000000000000		 Western (WDP) 				72%
Modulation Dr was obtained from the new MDP pyramidWDP: 611,314; Current real pressure: 229,178MDPMediterranean dietary pattern wo make a significant consumption: dairy and vegetable oils both had the highest to 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentWDP: 611,314; Current real pressure: 229,178MDPMediterranean dietary make a significant consumption: dairy and vegetable oils both had the highest contributionMediterranean dietary pattern wo make a significant consumption; dairy and vegetable oils both had the highest contributionMediterranean dietary pattern wo make a significant consumption; dairy and vegetable oils both had the pressure: 19.4; GHG emissions; meat contributed most for WDP and SPC, while dairy most for MDP						
Water pressure: 229,178Water consumption: dairy and vegetable oilsdietary pattern wo make a significant consumption: dairy and vegetable oilsSpanish dietary pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentCurrent real pressure: 229,178 Water consumption, km³/yWater consumption: dairy and vegetable oils both had the highest contributiondietary pattern wo make a significant consumption: dairy and vegetable oils both had the highest contributionGHG emissions, Gg C0_2eq/y MDP: 35,510; SCP-CS: 72,758; MDPGHG emissions: meat contributed dairy most for MDP		Mediterranean DP				
Inew WordpyramidSpanish dietary pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and Environmentpressure: 229,178 Water consumption, km³/yWater consumption: dairy and vegetable oils both had the highest contributionmake a significant consumption: dairy and vegetable oils both had the highest contributionMDP: 13.2; SCP- for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentPressure: 19.4 GHG emissions, Gg CO2eq/y MDP: 35,510; SCP-CS: 72,758; MDPWater consumption: dairy and vegetable oils both had the for public health					MDP	
Spanish dietary pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentWater consumption, km³/yconsumption: dairy and vegetable oils both had the highest contributioncontribution to increasing both fo sustainability and well-known benefit for public healthGHG emissions, Gg CO2eq/y EnvironmentGHG emissions: meat contributed most for WDP and SPC, while dairy most for SCP-CS: 72,758; MDPConsumption: dairy and vegetable oils both had the highest contributioncontribution to increasing both fo sustainability and well-known benefit for public health		new MDP pyramid				
Spatial dietally pattern was estimated from the FAOSTAT food balance sheets for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and Environmentconsumption, km³/ydairy and vegetable oils both had the highest constributionincreasing both fo sustainability and well-known benefit for public healthConsumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentConsumption Surveys soft the Spanish MDP: 35,510; SCP-CS: 72,758; MDPConsumption Surveys meat contributed most for WDP and SPC, while dairy most for MDP						
km³/yvegetable oils both had the highest for 2007, and also independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and Environmentkm³/yvegetable oils both had the highest contributionsustainability and well-known benefit for public healthKm3/yVegetable oils both had the pressure: 19.4GHG emissions: meat contributed most for WDP and SPC, while dairy most for MDPKm3/ySCP-CS: 72,758; MDPMDP						
Instruct of MinistryMDP: 13.2; SCP- FB: 19.7; SCP-CS: table both had the highest contributionwell-known benefit for public healthMDP: 13.2; SCP- FB: 19.7; SCP-CS: independently from the Household Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentMDP: 13.2; SCP- FB: 19.7; SCP-CS: table both had the table both had the scher highest contributionwell-known benefit for public healthMDP: 13.2; SCP- FB: 19.7; SCP-CS: table both had the contributionwell-known benefit for public healthGenerationGHG emissions, meat contributed most for WDP and SPC, while dairy most for SCP-CS: 72,758; MDP		•				
FB: 19.7; SCP-CS: independently from the HouseholdHighest for public healthConsumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentFB: 19.7; SCP-CS: 13.4; WDP: 22.0; Current real pressure: 19.4highest contributionfor public healthGG CO2eq/y MDP: 35,510; SCP-CS: 72,758; MDPmost for WDP and SPC, while dairy most for MDP						
Independently from the Household13.4; WDP: 22.0; Current realcontributionConsumption Surveys of the Spanish Ministry of Agriculture, Food and Environment13.4; WDP: 22.0; Current realcontributionGHG emissions, MDP: 35,510; SCP-CS: 72,758;GHG emissions: meat contributed most for WDP and SPC, while dairy most for MDP						
Interportion Surveys Consumption Surveys of the Spanish Ministry of Agriculture, Food and EnvironmentCurrent real pressure: 19.4 GHG emissions, Gg CO2eq/y MDP: 35,510; SCP-FB: 125,913; SCP-CS: 72,758; MDPGHG emissions: meat contributed most for WDP and SPC, while dairy most for MDP					0	for public nealth
Internotiseindu Consumption Surveys of the Spanish Ministry of Agriculture, Food and Environmentpressure: 19.4 GHG emissions, Gg CO2eq/y MDP: 35,510; SCP-FB: 125,913; SCP-CS: 72,758; MDPGHG emissions: meat contributed most for WDP and SPC, while dairy most for MDP					contribution	
of the Spanish Ministry of Agriculture, Food and EnvironmentGHG emissions, Gg CO2eq/y MDP: 35,510; SCP-FB: 125,913; SCP-CS: 72,758; MDPmeat contributed most for WDP and SPC, while dairy most for MDP						
Girls Optimistry Ministry of Agriculture, Food and EnvironmentGg CO2eq/y MDP: 35,510; SCP-FB: 125,913; SCP-CS: 72,758; MDPmost for WDP and SPC, while dairy most for MDP						
Food andMDP: 35,510;and SPC, whileEnvironmentSCP-FB: 125,913;dairy most forSCP-CS: 72,758;MDP						
Environment SCP-FB: 125,913; dairy most for SCP-CS: 72,758; MDP						
SCP-CS: 72,758; MDP						
WDD 017 100		Environment				
					MDF	
		WDP was also			For land use:	
TAOSTATIOOD				prossure. 02,003		
				Adherence to		
2007 Adherence to most after dairy MDP: decrease and meat.		2007				
GHG 72%					aa mouti	
land use 58%						
energy 52%						
water 33%						
Adherence to a						
WDP:						
increase all by 12-						
72%						

Scarborough et al., 2012 Modeling/ Data Analysis UK	Baseline diet, plus 3 dietary scenarios from the UK Committee on Climate Change (CCC): • Baseline (Current UK dietary inteke	Total deaths delayed or averted per year compared with baseline diet [95% credible interval]:	Diet 1: 19% decrease GHG 42% decrease LU Diet 2: 9% decrease GHG 39% decrease LU	For Diet 1, increased fruits & vegetables was biggest contributor to deaths delayed Reductions in salt	Diet 1 was largest contributor to deaths delayed or averted and largest environmental impact
	 dietary intake based on food purchase data), Scenario 1 (50% reduction in meat and dairy, replaced by fruit, vegetables, and cereals); Scenario 2 (75% reduction in red meat, replaced by pigs and poultry); Scenario 3 (50% reduction in pigs and poultry, replaced by fruits, vegetables, and cereals) 	 Scenario 1 - 36,910 [30,192- 43,592]; Scenario 2 - 1,999 [1,739-2,389]; Scenario 3 - 9,297 [7,288-11,301] CHD, stroke, and cancer mortality DIETRON model used to estimate deaths delayed or averted under each diet 	Diet 3: 3% decrease GHG 4% decrease LU	or changes in FAs made smaller contribution	
van Doreen et al., 2014 Modeling/ Data Analysis The Netherlands	 6 dietary patterns: Average Dutch Dutch DG Semi-Veg Vegetarian Vegan Mediterranean Average Dutch diet based on Dutch National Food Consumption Survey 1998 DDG diet based on the 2006 Dutch Dietary Guidelines for adult women Vegetarian diet replaced meat with eggs, pulses and nuts, and meat substitutes Vegan diet substituted milk with calciumenriched soy drinks and eggs with pulses Semi-vegetarian, average of DDG + vegetarian diets Mediterranean diet based on the Med pyramid, lower in meat and high in fish, fruits, vegetables, plant oils 	Health scores: Average Dutch: 75; DDG: 105; semi-vegetarian: 103; vegetarian: 100; vegan: 118; Mediterranean: 122 Omega-3 fish oils were lacking in the vegan and vegetarian diet Compared with the average Dutch diet, all other diets had significant health benefits in terms of reducing chronic disease risk	Sustainability scores: Average Dutch: 68; DDG: 90; semi-vegetarian: 98; vegetarian: 109; vegan: 130; Mediterranean: 102 GHG index: Average Dutch: 80 (4.1 CO2e/d); DDG: 90 (3.6 CO2e/d); semi-vegetarian: 96; vegetarian: 102; vegan: 123; Mediterranean: 96 LU index: Average Dutch: 56 (5.34 m^2*y/d); DDG: 89; semi-vegetarian: 100; vegetarian: 115; vegan: 137; Mediterranean: 107	Foods contributing most to GHG emission of the Dutch diet are: meat products (32%), dairy (19%), extras (13%), and drinks (7%) Foods contributing most to LU are: meat (54%), extras (18%), dairy (11%), and drinks (9%) Greatest reduction in GHG and LU can be obtained by reducing consumption of meat, dairy products, extras, and drinks (alcoholic, juices, soft drinks, coffee, and tea), in that order	Compared with the average Dutch diet, a healthy diet that is in compliance with the DDG is likely to result in a higher sustainability score The Mediterranean diet, which had the highest health score, also had a higher sustainability score than the average dutch Diet The diets with the optimal synergy between health and sustainability were those that were oriented in between a health focus and animal protein reduction (eg. semi- vegetarian)

Vieux et al., 2013 Modeling/ Data Analysis France	Self-selected diets of 1,918 French adults, classified into 4 patterns based on nutritional quality: High, Intermediate+ (I+), Intermediate- (I-), Low Based on indicators of nutritional quality: • MAR = Mean Adequacy Ratio • MER = Mean Excess Ratio • ED = Energy Density	Highest nutrition quality diets have MAR above median, MER and ED below median	Without adjustment, diet- related GHG were not significantly different between the 4 classes for men, but were significantly greater in the High class for women (p<0.0001) After adjusting for diet weight, GHG no longer significantly different across classes for either sex After adjusting for energy intake, high-quality diets were associated with higher GHG for both men and women (+9% and +22%, respectively; P<0.0001 for both)	Ruminant meat associated with the greatest GHG GHG per 100 g, gCO2e/d (in decreasing order): ruminant meat (1,627); fish (612); pork, poultry, and eggs (610); mixed dishes (369); fats (342); dairy (283); sweets and salted snacks (197); starches (114); fruit and vegetables (114) GHGEs per 100 kcal, gCO2e/d (in decreasing order): ruminant meat (857); fish (517); mixed dishes (312); pork, poultry, and eggs (308); fruit and vegetables (290); dairy (216); sweets and salted snacks (91); starches (61); fats (55)	More nutrient-dense diets were associated with higher levels of GHG, even though they contained more plant-based products Food groups such as sweets and salted snacks were negatively associated with diet-related GHG, while fruits and vegetables were positively associated with diet-related GHG.
---	--	--	--	--	--

Wilson et al	16 dietary patterns	All diets likely to be	GHG emissions,	Compared with	All diets that aimed to
2013	(4 groups: low-cost,	healthier than	kg CO2e/d	scenario C1 (low-	minimize cost or
	minimize GHG	current average NZ	(asterisk indicates	cost), scenario G1	GHGs were both less
Modeling/	emissions, "relatively	diet for preventing	that scenario	(low-cost, low-	expensive and more
Data Analysis	healthy", and "more	non-communicable	minimized this	GHGs [NZ	healthy than the
	familiar meals") with	diseases	variable):	values]) resulted	current average NZ
New Zealand	equivalent in energy		C1: 2.72; C2: 2.63;	in:	diet
	and met dietary	Compared with the	C3: 2.2; C4: 4.33;	 increases in fruit 	
	requirements:	typical NZ dietary	G1*: 1.67; G1 with	and vegetable	Low-cost and low-
	 lowest-cost (C1); 	pattern, the low-	NZ GHG values*:	consumption	GHG diets were
	 low-cost, including 	cost and low-GHG	1.39; G2*: 1.31;	(except carrots),	generally
	porridge and rotis to ensure realistic	optimized dietary	G3*: 1.56; G4*: 1.9; ASIAN: 4.03;	 increases in pulse, seed, and 	complementary, with scenario G2 (low
	preparation methods	patterns provide	ASIAN-G*: 3.29;	nut consumption	GHG, higher cost)
	(C2);	advantages for	MED: 4.68; MED-	(except dry peas),	being associated with
	 low-cost, requiring 	cardiovascular	G*: 2.17; NZ-M:	•increases in oat	the lowest GHG
	minimal cooking skills	disease prevention	5.25; NZ-S: 4.54;	and white flour	emissions
	(C3);		NZ-T: 4.24; NZ-P:	consumption, but	
	 low-cost, with 	Benefits included	5.98	decreases in	"Healthier diets" that
	relatively high	higher PUFA/SFA		wholemeal flour	minimized GHGs
	vegetable intake (C4);	ratio, less SFA from	Scenario G2 (low	and pasta	achieved smaller
	 lowest GHG 	meat, lower sodium	GHG, higher cost)	consumption,	GHG reductions than
	emissions, low-cost	and higher	associated with the	 increase in whole 	scenarios that aimed
	(G1);	potassium intake	lowest GHG	milk consumption	to reduce GHGs
	• same as G1, with		emissions	but decrease in	without following a
	higher cost/day (G2);	High vegetable	Seenaria C4 (low	milk powder	healthier diet
	 same as G2, including porridge as 	diets (C4, MED,	Scenario G4 (low GHG, vegan) had	consumption, •increases in	
	standard meal (G3);	ASIAN) also	slightly higher	vegetable oils	
	• same as G2 but	provided benefits	GHGs than the	including	
	vegan;	against colon	other GHG-	margarine and	
	Mediterranean style	cancer due to	reduction scenarios	peanut butter, but	
	diet (MED);	higher fiber intake		decreases in egg	
	 Mediterranean style 		"Healthier diets"	and added sugar	
	diet, but minimizing		scenarios, ASIAN-	consumption	
	GHG emissions		G (Asian diet, low		
	(MED-G);		GHG) and MED-G		
	Asian style diet		(Mediterranean		
	(ASIAN); • Asian style diet, but		diet, low GHG) associated with		
	minimizing GHG		higher GHGs than		
	emissions (ASIAN-G);		those that aimed to		
	More familiar NZ		reduce GHGs		
	diet, main meal -		without following a		
	mince (NZ-M);		healthier diet		
	More familiar NZ				
	diet, main meal -		Increasing dietary		
	sausages (NZ-S);		variety and		
	More familiar NZ		acceptability		
	diet, main meal - fish		increased the daily cost; however, only		
	(NZ-T); • More familiar NZ		2 scenarios cost		
	diet, main meal -		more than \$7/d,		
	Pacific theme (NZ-P)		and all scenarios		
			cost less than half		
			the estimated cost		
			of current average		
	1		NZ diet		

References

- Aston LM, Smith JN, Powles JW. Impact of a reduced red and processed meat dietary pattern on disease risks and greenhouse gas emissions in the UK: a modelling study. BMJ Open. 2012;2(5).
 PMID: 22964113. <u>http://www.ncbi.nlm.nih.gov/pubmed/22964113</u>.
- Baroni L, Cenci L, Tettamanti M, Berati M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur J Clin Nutr. 2007;61(2):279-86. PMID: 17035955. <u>http://www.ncbi.nlm.nih.gov/pubmed/17035955</u>.
- Barosh L, Friel S, Engelhardt K, Chan L. The cost of a healthy and sustainable diet--who can afford it? Aust N Z J Public Health. 2014;38(1):7-12. PMID: 24494938. <u>http://www.ncbi.nlm.nih.gov/pubmed/24494938</u>.
- 4. de Carvalho AM, Cesar CL, Fisberg RM, Marchioni DM. Excessive meat consumption in Brazil: diet quality and environmental impacts. Public Health Nutr. 2013;16(10):1893-9. PMID: 22894818. <u>http://www.ncbi.nlm.nih.gov/pubmed/22894818</u>.
- Hendrie GA, Ridoutt BG, Wiedmann TO, Noakes M. Greenhouse gas emissions and the Australian diet--comparing dietary recommendations with average intakes. Nutrients. 2014;6(1):289-303. PMID: 24406846. <u>http://www.ncbi.nlm.nih.gov/pubmed/24406846</u>.
- Macdiarmid JI, Kyle J, Horgan GW, Loe J, Fyfe C, Johnstone A, et al. Sustainable diets for the future: Can we contribute to reducing greenhouse gas emissions by eating a healthy diet? Am J Clin Nutr. 2012;96(3):632-9. PMID: 22854399. <u>http://www.ncbi.nlm.nih.gov/pubmed/22854399</u>.
- 7. Meier T, Christen O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ Sci Technol. 2013;47(2):877-88. PMID: 23189920. <u>http://www.ncbi.nlm.nih.gov/pubmed/23189920</u>.
- Peters CJ, Wilkins JL, Fick GW. Testing a complete-diet model for estimating the land resource requirements of food consumption and agricultural carrying capacity: The New York State example. Renewable agriculture and food systems. 2007;22(2):145-53. <u>http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1091328&fileId=S</u> <u>1742170507001767</u>.
- 9. Pimentel D, Pimentel M. Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr. 2003;78(3 Suppl):660S-3S. PMID: 12936963. http://www.ncbi.nlm.nih.gov/pubmed/12936963.
- 10. Pradhan P, Reusser DE, Kropp JP. Embodied greenhouse gas emissions in diets. PLoS One. 2013;8(5):e62228. PMID: 23700408. <u>http://www.ncbi.nlm.nih.gov/pubmed/23700408</u>.
- 11. Saez-Almendros S, Obrador B, Bach-Faig A, Serra-Majem L. Environmental footprints of Mediterranean versus Western dietary patterns: beyond the health benefits of the Mediterranean diet. Environ Health. 2013;12:118. PMID: 24378069. http://www.ncbi.nlm.nih.gov/pubmed/24378069.

- 12. Scarborough P, Allender S, Clarke D, Wickramasinghe K, Rayner M. Modelling the health impact of environmentally sustainable dietary scenarios in the UK. Eur J Clin Nutr. 2012;66(6):710-5. PMID: 22491494. <u>http://www.ncbi.nlm.nih.gov/pubmed/22491494</u>.
- van Dooren C, Marinussen M, Blonk H, Aiking H, Vellinga P. Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns. Food Policy. 2014;44(0):36-46. <u>http://www.sciencedirect.com/science/article/pii/S0306919213001620</u>.
- 14. Vieux F, Soler LG, Touazi D, Darmon N. High nutritional quality is not associated with low greenhouse gas emissions in self-selected diets of French adults. Am J Clin Nutr. 2013;97(3):569-83. PMID: 23364012. <u>http://www.ncbi.nlm.nih.gov/pubmed/23364012</u>.
- Wilson N, Nghiem N, Ni Mhurchu C, Eyles H, Baker MG, Blakely T. Foods and dietary patterns that are healthy, low-cost, and environmentally sustainable: a case study of optimization modeling for New Zealand. PLoS One. 2013;8(3):e59648. PMID: 23544082. http://www.ncbi.nlm.nih.gov/pubmed/23544082

References not included in the review:

- 1. Higgins JPT GSe. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0: The Cochrane Collaboration; 2011. Available from: www.cochrane-handbook.org.
- Drummond MF, Jefferson TO. Guidelines for authors and peer reviewers of economic submissions to the BMJ. The BMJ Economic Evaluation Working Party. BMJ. 1996;313(7052):275-83. PMID: 8704542. <u>http://www.ncbi.nlm.nih.gov/pubmed/8704542</u>.
- 3. Eddy D. The role of mathematical modelling in Assessing medical technology,. Technology Assessment. 1985:144-54.
- Stevenson M, Lloyd-Jones M, Morgan MY, Wong R. Non-invasive diagnostic assessment tools for the detection of liver fibrosis in patients with suspected alcohol-related liver disease: a systematic review and economic evaluation. Health Technol Assess. 2012;16(4):1-174. PMID: 22333291. <u>http://www.ncbi.nlm.nih.gov/pubmed/22333291</u>.
- Goedkoop M SR. The Eco-Indicator 99, A Damage Oriented Method for Life Cycle Assessment Methodology Report 2000. Available from: <u>http://teclim.ufba.br/jsf/indicadores/holan%20ecoindicator%2099.pdf</u>.

		Supplem	entary Materia		ponents/Indiv Low Sustain		or Sustainabi	ility Studies			
	(Individual foods provided when reported)										
Study Dietary Patterns (High vs Low	Vegetables	Fruits	Cereals/Grai ns	Legumes Nuts/Seeds	Meat	Seafood	Beverages	Dairy/ Eggs	Fats/ Oils	Sweets/ Snacks	
Sustainable) Aston 2012 UK Counterfactual (combination of lowest RPM + Vegetarian) diet vs current intake British National Diet and Nutrition Survey (NDNS)	Fruit and vegetables: Vegetables (1) (Roots, onions, brassicas) Vegetables (2) (All other) Tomato	Fruit and vegetables: Fruit	Starchy staples: Bread Breakfast Pasta Rice Unprocessed potato Frozen potato Other potato Flour/other grains	Fruit and vegetables: Pulses	Unprocessed Red meat [‡] : Beef, veal, pork, lamb, other White Meat Processed meat: Primarily beef ♥Red & Processed Meat (RPM) 91 -> 53 g/day (42%) in men 54 -> 30 g/day (44%) in women	Fish: Fresh fish Shell fish Frozen fish	Beverages: Soft bev Mineral water Alcoholic bev Fruit juice Coffee Tea Cocoa Tap water	Dairy/Eggs: Milk Cheese Ice Cream Eggs	Fats: Butter Margarine Cooking oil	Other: Crispbread Biscuits Buns/cakes Chocolate/ Sweets Sugar/honey Jam/ Marmalade	
Baroni 2009 Italy Vegan vs Ave Italian diet Ave Italian diet (Eurostat, Euromeat, FAO) 'Vegan' defined a plant only diet, which excludes any food of animal origin, such as meat, fish, milk, dairy products and eggs	Descending order of environmental impact: Beef Sole fish Fresh cheese Aged cheese Milk Yogurt Vegetables Tuna fish Poultry Rice Whole bread White bread Pasta Fruit Crisp bread Jam Sugar	Descending order of environmental impact: Beef Sole fish Fresh cheese Aged cheese Milk Yogurt Vegetables Tuna fish Poultry Rice Whole bread White bread Pasta Fruit Crisp bread Jam Sugar	Descending order of environmental impact: Beef Sole fish Fresh cheese Aged cheese Milk Yogurt Vegetables Tuna fish Poultry <u>Rice</u> <u>Whole bread</u> <u>Pasta</u> Fruit Crisp bread Jam Sugar		Vegan excluded any type of animal flesh, including meat and fish ♥0 g/day Beef Poultry	Vegan excluded any type of animal flesh, including meat and fish ♥0 g/day Sole fish Tuna fish		Vegan excluded any food of animal origin, such as milk, dairy products and eggs ✓0 g/day Fresh cheese Aged cheese Milk Yogurt		Descending order of environmental impact: Beef Sole fishFresh cheese Aged cheese Milk Yogurt Vegetables Tuna fish Poultry Rice Whole bread White bread Pasta Fruit Crisp bread Jam Sugar	

Barosh 2014 Australia H&S basket [§] (based on Australian DGs & environment) vs typical basket (hypothetical household purchases) (weekly)	Food Group: Vegetables: Typical – zucchini Sustainable – carrots	Food Group: Fruit: Typical –apples Sustainable - oranges	Food Group: Grains (cereal): Typical –white bread Sustainable – whole meal	Food Group: Meats & poultry, fish, eggs, tofu, nuts, and seeds, legumes/beans No examples of typical vs sustainable choices for tofu, nuts, and seeds, legumes/beans	Food Group: <u>Meats &</u> <u>poultry</u> , fish, eggs, tofu, nuts, and seeds, legumes/beans : Typical -beef Sustainable - kangaroo	Food Group: Meats & poultry, <u>fish</u> No examples of typical vs sustainable choices for fish		Food Group: Milk, yogurt, cheese Typical –cheese Sustainable - yogurt		
de Carvalho 2013 Brazil Red and Processed Meat (RPM) pattern ISA-Capital 2003 study Health Survey for Sao Paulo Multiple Source Method used to model RPM intake					RPM: Sum of red meat (beef and pork) and processed meat (cured, salted, smoked or with chemical preservatives) RPM intake = 106 g/d 73 g beef 8 g pork 25 g processed meat (High intake = >500g/wk)					
Hendrie 2014 Australia Foundation diet: reduced energy Australian DG diet w/ only core foods vs average Australian diet Australian Nat Nutrition Survey	Core foods: ↑Vegetables 331 -> 432 g/d	Core foods: ↑Fruit 210 -> 300 g/d	Core foods: ↑ Breads/ cereals 244 -> 324 g/d		Core foods: ♥ Red meat 73 -> 65 g/d ↑ Poultry 35 -> 50 g/d Non-Core foods: ♥ Processed meats 27 -> 0 g/d	Core foods: ↑Fish 24 ->30 g/d	Non-core foods: ♦Soft drinks, coffee/tea 298 -> 0 ♦ Alcohol 254 -> 0 g/d	Core foods: ↑ Dairy foods 263 -> 408 g/d ↓Eggs 14 -> 8 g/d	Core foods: ↑Unsat oils 16 -> 26 g/d Non-core foods: ↓SFA 4 -> 0 g/d	Non-core foods:
Macdiarmid 2012	♣Fruit & Vegetables:	♣Fruit & Vegetables:	♠Starchy foods w/	↑Legumes: 385 g/wk	♦Red Meat: 392 ->190 g/wk	∱Fish: 161 -> 223 g/wk		Dairy products:		

UK Sustainable w/ Acceptability Constraints vs average UK diet Diet modeled on UK dietary requirements for adult women National Diet & Nutrition Survey	330 -> 555 g/d Carrots, turnips (cooked) Tomatoes Peas Brassicas Cauliflower, broccoli, spinach Sweet corn Cucumber Lettuce Mushrooms (fried) Onions (fried) Peppers	330 -> 555 g/d Apples, pears Bananas Grapes, kiwi, cherries Peaches, nectarines, apricots Raspberries, strawberries, blueberries Fruit juice	potatoes: 2,936 g/wk Pasta, noodles (cooked) Rice (cooked) White bread Whole-grain bread Whole-grain, high-fiber cereals Other cereals Porridge oats Nonfried potato products Potatoes (no	Beans Baked beans Lentils (cooked) Nuts and seeds: 35 g/wk Sesame seeds Mixed nuts Beans and	Beef Pork Lamb Chicken 182 g/wk	White fish Shellfish Oily fish	2,366 g/wk Skim milk Other cheese (reduced fat) Yogurt (low fat) ♥Eggs 119 g/wk		735 g/wk Biscuits Buns, cakes, pastries Desserts Low-fat spread Fried, roasted potatoes Crisps, savory snacks Sugar Chocolate Preserves
Meier & Christen, 2013 Germany Lacto-ovo or Vegan vs average German diet National Nutrition Surveys (NNS) I & II (NNS II shown) Lacto-ovo or Vegan from USDA food patterns	♦Vegetables: 231 -> 245 g/d ♦Potato products 80 -> 107 g/d	↓Fruit: 347 -> 250 g/d	added fat) ↑Grains: 278 -> 295 g/d	★Legumes: 124 or 128 g/d ♠Nuts/Seeds 3 -> 21 or 26 g/d	✓Meat: 103 -> 0 g/d beef, veal pork poultry other meat	♥Fish: 25 -> 0 g/d	↓Butter 12-> 8 or 0 g/d ↑Dairy 253-> 732 or 0 g/d ↑Vegan milk products: 0 -> 0 or 732 g/d ↓Egg products: 18-> 16 or 0 g/	↑Vegetable oils,margarine 15-> 27 or 34 g/d	∳Sugar: 70 -> 32 g/d
Peters 2007 US 42 diets from 0 - 381 g/d meat and eggs and 20 - 45% fat calories NE US Food Commodity Intake Database Food Guide	Vegetables: Meet or exceed recommendatio ns (unless total kcal limit would be exceeded) USDA Food Guide Pyramid	Fruit: Meet or exceed recommendatio ns (unless total kcal limit would be exceeded) USDA Food Guide Pyramid	Grains: Meet or exceed recommendatio ns (unless total kcal limit would be exceeded) USDA Food Guide Pyramid	Pulses: Meets recommendatio n	✓Meat: 7 different quantities of cooked meat and eggs, ranging from 0-381 g/d in 63.5 g/d incrementsBeef, pork, chicken Low fat – lean cuts		Dairy: Meets recommendatio n Dairy: Low fat - Milk, skim High fat - Milk, whole	Fat: 6 different levels of fat, ranging from 20-45% total calories, in 5% increments	Sugar: Limited to 10% of total kcal

Pyramid recommended servings					Most Sustainable: Lowest meat and eggs (0 g/d) at all 3 fat intake levels					
Pimentel & Pimentel, 2003 US Lacto-ovo vegetarian diet vs meat-based FAOSTAT Lacto-ovo estimated	↑Vegetables: 239 ->286 kg/y	↑Fruit: 109 ->112 kg/y	∱Food grain: 114 ->152 kg/y	▲Legumes: 4.3 ->7.5 kg/y ♠Nuts: 3.1 ->4.0 kg/y	♥Meat: 124 ->0 kg/y Lamb Beef cattle Swine Turkeys Broilers	♥Fish: 20 ->0 kg/y		★Dairy Products: Dairy (milk) 256 ->307kg/y ★Eggs: 14.5 ->19.2 kg/y	♦Vegetable oils: 24 ->25 kg/y Animal fats 6.7 ->6.7 kg/y ♦Oil crops: 6 -> 8 kg/y	Sugars & sweeteners: 74 ->74kg/y
Pradham 2013 Global Low energy diet vs. Very high energy diet (per capita intake 1870 - >3400 kcal/day (from 16 DP in 4 categories: low, mod, high, and very high kcal diets)	Low energy diet ¹ : < 2,100 kcal/cap/day >50% cereals (pattern#1) or > 70% starchy roots, cereals, and pulses (pattern #3) <10% animal products				Very high energy diets ⁺⁺ : >2,800 kcal/cap/day, high amount of meat and alcohol (pattern #14 & 15)					
FAOSTAT Sáez- Almendros 2013 Spain Mediterranean Dietary Pattern (MDP) vs Western DP (WDP) MDP: from	◆Vegetables: 49 -> 269 kg/y MDP: ≥ 2 serv/ meal Variety of colors/textures	★Fruit: 111 -> 175 kg/y MDP: 1-2 serv/ meal Variety of colors/textures	♥Cereals/Grai n: 112 -> 75 kg/y MDP: 1-2 serv/meal (Preferably whole grain)	Legumes: MDP: >2 serv/wk Nuts Seeds Olives: MDP: 1-2 serv/d	♥Meat: 133 -> 16 kg/y MDP: Red meat <1 serv/wk Processed meat <1 serv/wk	Fish: 54 -> 14 kg/y MDP: >2 serv/wk	 ♥Dairy: 254 -> 71 kg/y MDP: 2 serv/d (lowfat) Eggs: MDP: 2-4 serv/wk 		Vegetable oils and fats: 29 -> 11 kg/y MDP: Olive oil 1-2 serv/meal	♥Sweets: 68 -> <1% kg/y MDP: <2 serv/wk

Mediterranean Diet Pyramid (2011) WDP: from US food pattern & FAOSTAT Scarborough 2012 UK Diet Scenario 1 vs 3 (% 2005 levels ave UK diet) Level of substitution based on food energy at the commodity level from UK food data Van Doreen 2014 Netherlands Vegan or Mediterranean vs average Dutch (g/day) Dutch National Food Consumption Survey Vegan: ADA 2009 Mediterranean: Updated Mediterranean Diet Pyramid (2011)	Scenario 1: ♥Milk & eggs - 60% ♥All Meat - 36% ♥Sugar - 70% ♥Vegetables/ fruits -160% ♥Cereals/ potatoes -133% ♥Vegetable oils (not palm) - 133% Other groups - 100% ♥Vegetables: 127 ->400 or 300 g/d Fresh Other	♦Fruit: 103->200 or 250 g/d	♣Breads: 119 ->210 g/d ♠Grain products: 51 ->53 or 100 g/d Potatoes: 101 ->105 or 25 g/d	Pulses: 4 ->21 or 75 g/d	Scenario 3: Milk and eggs- 100% Cow & sheep- 100% ♥Pig & poultry- 50% ♥Sugar-90% ♥Vegetable/ fruits -110% ↑Cereals/ potatoes -110% ↑Vegetable oils (not palm) - 110% Other groups - 100% ♥Meat, meat products, poultry: 102 ->0 or 30 g/d \$Soy products & meat substitutes: 2 -> 43 or 4 g/d	Fish: 9 ->0 or 37 g/d Mediterranean Diet: lower in meat, high in fish, fruits, and vegetables, w/ fewer extras, and plant oils instead of animal fats	◆Drinks : Non- alcoholic: 1,487-> 1,500 ml/d Alcoholic: 94 ->150 g/d	 ✓Dairy: Milk & milk products 332 ->0 or 300 g/d Eggs: 13 -> 0 or 29 g/d Soy drink: 0 ->450 or 0 g/d Vegan diet: milk replaced by calcium- enriched soy drinks. Protein similar to vegetarian, but eggs replaced by extra portion of pulses. Vegetables increased 200 g 	Oils & Fats : 46 ->45 g/d ♥Butter 3->0 g/d	Vother (extras) 859 ->300 or 200g/d
--	--	--	--	------------------------------------	--	---	--	--	--	--

								w/ calcium rich		
Vieux 2013 France Dietary patterns w/ indicators of nutritional quality National Survey on Food Consumption	Fruit and vegetables (including fruit juices and nuts) Most sustainable on weight basis	Fruit and vegetables (including fruit juices and nuts) Most sustainable on weight basis	Starchy foods (refined grains and unrefined starches such as whole grains, potatoes, and legumes) Most sustainable on weight basis		Ruminant meat (beef and lamb): Least sustainable on weight basis Pork, poultry, and eggs (including pork meat and deli meat such as bacon/sausage)	Fish (including shellfish)	Drinks (including water, alcohol, and hot and light drinks)	Dairy products (milk, fresh dairy products, and cheese)	Fats (animal and vegetable)	Sweets and salted snacks (including sweet drinks)
Wilson 2013 New Zealand Scenario G2 – minimize GHG + achieve nutrient levels w/ low (not lowest) cost vs Average NZ diet NZ Adult Nutrition Survey (NZANS) (men) + Diet scenarios∞ (16 DPs)	 ♦ Fruit and vegetables: ♦ Potatoes 255 ->0 or 52 g/d ♥ Carrots 97 ->52 g/d ♥ Brocolli 18 -> 0 g/d ♥ Peas (frozen) 24 -> 0 g.d 	 ♦Fruit and vegetables: ♦Kiwifruit 29 ->16 g/d ♦Sultanas 2 ->0 g/d ♦Oranges 50 -> 0 g/d 	Cereals and grains: ↑Oats (wholegrain) 14 ->81 g/d ↓Flour (wholemeal) 3 ->0 g/d ↓White flour 6 -> 0 g/d	✦Pulses, seeds and nuts: Sunflower seeds 210 g/d Peanuts 180 g/d	:	♥Fish: 65 ->0 g/d		Dairy products: ↑Milk powder 4 -> 22 g/d ↓Milk (whole, homogenized) 271 ->0 g/d ↓Eggs: 43 ->0 g/d	↑Veg oil: 60 g/d ↓Margarine: 13 -> 0 g/d	V Added sugars 22 -> 0 g/d

⁺Red meat as beef, veal, pork, lamb, mutton and goat, either fresh, minced (including hamburgers) or frozen, but unprocessed other than by cooking with heat. Although processed meats were primarily red meats, the term 'red meat' was used to refer to 'unprocessed red meat'. White meat as meat from poultry, fresh, minced or frozen, but unprocessed other than by cooking with heat. Processed meat as meat preserved by smoking, curing, salting or addition of nitrates, nitrites or other preservatives. Under this definition, processed meats were primarily red, but included white meats, and included ham, bacon, pastrami, salami, sausages and processed deli or luncheon meats.

§ The H&S diet was based on three overarching principles: (i) any food that is consumed above a person's energy requirement represents an avoidable environmental burden in the form of greenhouse gas emissions, use of natural resources and pressure on biodiversity; (ii) reducing the consumption of discretionary food choices, which are energy-dense and highly processed and packaged, reduces both the risk of dietary imbalances and the use of environmental resources; and (iii) a diet comprising less animal- and more plant-derived foods delivers both health and ecological benefits.

[¶]Countries characterized by high calorie diets exhibit a production mode that needs high fossil energy inputs (1,800– 3,500 kcal/cap/day). In countries with low calorie diets, the energy input can be as low as 80–150 kcal/cap/day. But non-CO2 GHG emission intensities are relatively high for low and the moderate calorie diets. Therefore, total GHG emissions are only slightly higher for high and very high calorie diets (2.48–6.10 kg CO2eq./cap/day) compared to low and moderate calorie diets (1.43–4.48 kg CO2eq/cap/day).

⁶⁰Obtained data on a wide range of individual food items and optimized towards a diet meeting nutritional requirements ("bottom-up" approach).

Supplementary Material: Search Plan and Results—Dietary Patterns & Sustainability

Search Strategy

Dates Searched: 02/20/2014 - 02/21/2014

Databases: Pubmed, Embase, Cochrane, Navigator

Year Range: 01/2000 - 02/2014

Search Terms and Dates): Total: 1685 (+ 5 dupes = 1690)

PubMed 1449 hits; 2/20/2014

(environmental footprint* OR Carbon Footprint*[tiab] OR environmental impact* OR food security* OR food insecurity* OR "Conservation of Natural Resources"[Mesh] OR "Greenhouse Effect"[Mesh] OR "Carbon Footprint"[Mesh] OR "Environmental Monitoring"[Mesh] OR ((environment*[tiab] OR food[major:noexp] OR food[ti] OR diet[major]) AND sustainab*[tiab])) OR ("Conservation of Natural Resources"[major:noexp] OR "Greenhouse Effect"[major:noexp] OR "Carbon Footprint"[major:noexp] OR

"Environmental Monitoring"[major:noexp]) OR ("Ecosystem"[Mesh] OR ecological system*[tiab] OR greenhouse*[tiab] OR "Ecosystem"[major] OR ecological system*[tiab] OR greenhouse*[tiab] OR "land use"[tiab] OR "water use"[tiab])

Eng/hum AND ("Study Characteristics" [Publication Type] OR "clinical trial"[ptyp] OR "Epidemiologic Studies"[Mesh] OR "Support of Research"[ptyp]) NOT (editorial[ptyp] OR comment[ptyp] OR news[ptyp] OR letter[ptyp] OR review[ptyp])

Embase 170; 2/20/2014

(MedDietScore OR adequacy index* OR kidmed OR "healthy eating index") OR ((index OR score OR scoring) NEAR/3 ('diet quality' OR dietary OR nutrient* OR eating OR food OR dieti)):ti,ab

OR

('diet quality' OR 'eating habit'/exp OR 'Mediterranean diet'/exp OR nordiet:ti,ab OR 'nordic diet':ti,ab OR DASH:ti,ab OR 'dietary approaches to stop hypertension':ti,ab OR vegan*:ab,ti OR vegetarian*:ab,ti OR 'vegetarian diet'/exp OR 'vegetarian'/exp OR 'prudent diet':ti,ab OR 'western diet':ti,ab OR omniheart:ti,ab OR omni:ti OR 'plant based diet') OR ((dietary OR eating OR food OR diet) NEAR/2 (pattern? OR habit? OR profile? OR recommendation? OR guideline?)) OR (('ethnic, racial and religious groups'/exp or Okinawa* OR 'mediterranean') AND (diet/exp OR eating/exp OR 'food intake'/de)) AND

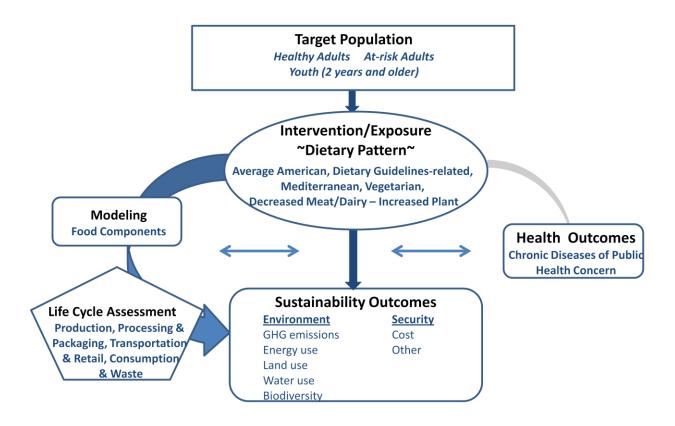
'environmental sustainability'/exp OR 'food security'/exp OR 'carbon footprint'/exp OR 'human impact (environment)'/exp OR 'greenhouse effect'/exp OR 'ecosystem'/de OR 'land use'/de OR 'plant water use'/exp OR (food NEAR/5 sustainab*) OR 'food insecurity'/exp OR 'environmental impact' OR (environment* NEAR/2 footprint) OR diet* NEAR/5 sustainab* AND [humans]/lim AND [english]/lim AND [embase]/lim NOT [medline]/lim

Cochrane 8; 2/21/2014

("diet quality" OR (dietary NEXT guideline*) OR (dietary NEXT recommendation*) OR ((food OR eating OR diet OR dietary) NEAR/3 (pattern OR profile OR habit)) OR (eating NEXT style*) OR ("dietary approaches to stop hypertension" OR vegan* OR vegetarian* OR "prudent diet" OR "western diet" OR nordiet OR "Nordic diet" OR omniheart OR "Optimal Macronutrient Intake Trial to Prevent Heart Disease" OR ((asia* OR western OR Okinawa* OR "plant based" OR Mediterranean OR DASH) AND (diet* OR food))) OR ((Index OR score OR indices OR scoring) NEAR/3 (dietary OR diet OR food OR eating)) OR "adequacy index" OR kidmed OR MedDietScore)

AND

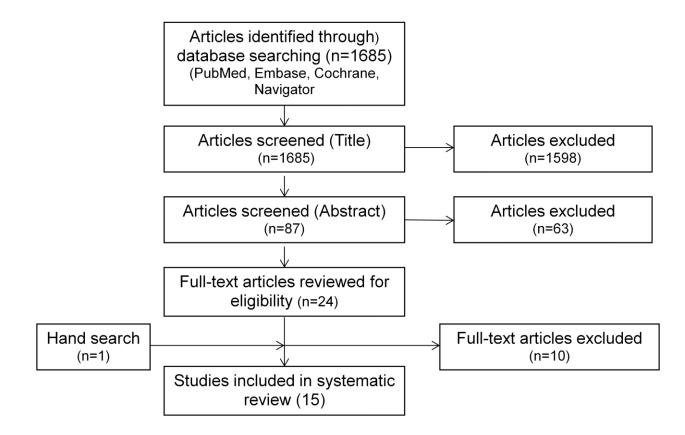
((Food OR environment* OR diet) NEAR/4 (sustainab*)) OR ((carbon OR environment*) NEAR/2 footprint) OR "food insecurity" OR "food security" OR (greenhouse NEAR/1 effect*) OR ("greenhouse gas" NEAR/1 emission*) OR "land use" OR "water use"


Navigator (FSTA/BIOSIS/CAB Abstracts) 63; 2/21/2014

(MedDietScore or "adequacy index" or kidmed or ((index or score) near/2 (("diet quality") or dietary or nutrient* or eating or food or diet)) or ((Diet or dietary or eating or food) near/2 (pattern* or profile* or habit* or guideline* or recommendation*) or "diet quality") or "dietary approaches to stop hypertension" or vegan* or vegetarian* or "prudent diet" or "western diet" or omniheart or "Optimal Macronutrient Intake Trial to Prevent Heart Disease" or nordiet or "Nordic diet" OR ((Okinawa* or asia* or Chinese or japan* or Hispanic* or ethnic or "plant based" or title:omni or title:Mediterranean or DASH) near/3 (title:diet* or abstract:diet*)))

AND

((Food OR environment* OR diet) NEAR/4 sustainab*) OR ((carbon OR environment*) NEAR/2 footprint) OR "food insecurity" OR "food security" OR (greenhouse NEAR/1 effect*) OR ("greenhouse gas" NEAR/1 emission*) OR "land use" OR "water use"


Analytical Framework

Inclusion Criteria

PubMed, Cochrane, Embase, and Navigator were searched for original research articles published in English in peer-reviewed journals. Studies published since January 2000 with subjects who were healthy or at elevated chronic disease risk from countries with high or very high human development were considered. Study designs included in the review were randomized and non-randomized controlled trials, prospective cohort studies, cross-sectional studies, before and after studies, and case-control studies. Only systematic reviews, meta-analyses, and narrative reviews were excluded. Trials were required to have ≥ 10 subjects per arm and a follow-up of $\geq 80\%$. Studies that examined low-calorie diets and other treatment diets were excluded. Finally, studies were required to include a description of the dietary pattern along with sustainability or food security outcomes.

Search Results

Included Articles

The following articles have been determined to be relevant for inclusion in the body of evidence:

- Aston LM,Smith JN,Powles JW. Impact of a reduced red and processed meat dietary pattern on disease risks and greenhouse gas emissions in the UK: a modelling study. BMJ Open. 2012. 2:#pages#. PMID:22964113. Department of Public Health and Primary Care, Cambridge, Institute of Public Health, University of Cambridge, Cambridge, UK.
- Baroni L,Cenci L,Tettamanti M,Berati M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur J Clin Nutr. 2007. 61:279-86. PMID:17035955. Department of Neurorehabilitation, Villa Salus Hospital, Mestre-Venice, Italy.
- Barosh L, Friel S, Engelhardt K, Chan L. The cost of a healthy and sustainable diet who can afford it?. Aust N Z J Public Health. 2014. 38:7-12. PMID:24494938. National Centre for Epidemiology and Population Health, Australian National University, Australian Capital Territory.
- de Carvalho AM,Cesar CL,Fisberg RM,Marchioni DM. Excessive meat consumption in Brazil: diet quality and environmental impacts. Public Health Nutr. 2013. 16:1893-9. PMID:22894818. Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, SP, Brazil.
- 5. Hendrie GA,Ridoutt BG,Wiedmann TO,Noakes M. Greenhouse gas emissions and the Australian diet-comparing dietary recommendations with average intakes. Nutrients. 2014. 6:289-303. PMID:24406846. Animal, Food and Health Sciences, Commonwealth Scientific Industrial Research Organisation (CSIRO), P.O. BOX 10041, Adelaide 5000, Australia. gilly.hendrie@csiro.au. Animal, Food and Health Sciences, Commonwealth Scientific Industrial Research Organisation (CSIRO), P.O. BOX 10041, Adelaide 5000, Australia. brad.ridoutt@csiro.au. Animal, Food and Health Sciences, Commonwealth Scientific Industrial Research Organisation (CSIRO), P.O. BOX 10041, Adelaide 5000, Australia. t.wiedmann@unsw.edu.au. Animal, Food and Health Sciences, Commonwealth Scientific Industrial Research Organisation (CSIRO), P.O. BOX 10041, Adelaide 5000, Australia. t.wiedmann@unsw.edu.au. Animal, Food and Health Sciences, Commonwealth Scientific Industrial Research Organisation (CSIRO), P.O. BOX 10041, Adelaide 5000, Australia. manny.noakes@csiro.au.
- Macdiarmid JI,Kyle J,Horgan GW,Loe J,Fyfe C,Johnstone A,McNeill G. Sustainable diets for the future: Can we contribute to reducing greenhouse gas emissions by eating a healthy diet?. Am J Clin Nutr. 2012. 96:632-9.
 PMID:22854399. Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK. j.macdiarmid@abdn.ac.uk
- Meier T, Christen O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ Sci Technol. 2013. 47:877-88. PMID:23189920. Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 5, 06120 Halle (Saale), Germany. toni.meier@nutrition-impacts.org
- 8. Peters CJ, Wilkins JL, Fick GW. Testing a complete-diet model for estimating the land resource requirements of food consumption and agricultural carrying capacity: The New York State example. Renewable agriculture and food systems. 2007. 22:145-153.
- Pimentel D,Pimentel M. Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr. 2003. 78:660S-663S. PMID:12936963. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. dp18@cornell.edu
- Pradhan P,Reusser DE,Kropp JP. Embodied greenhouse gas emissions in diets. PLoS One. 2013. 8:e62228. PMID:23700408. Potsdam Institute for Climate Impact Research, Potsdam, Germany. pradhan@pikpotsdam.de
- Saez-Almendros S,Obrador B,Bach-Faig A,Serra-Majem L. Environmental footprints of Mediterranean versus Western dietary patterns: beyond the health benefits of the Mediterranean diet. Environ Health. 2013. 12:118. PMID:24378069. Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Luis Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain. Iserra@dcc.ulpgc.es.
- Scarborough P,Allender S,Clarke D,Wickramasinghe K,Rayner M. Modelling the health impact of environmentally sustainable dietary scenarios in the UK. Eur J Clin Nutr. 2012. 66:710-5. PMID:22491494.

British Heart Foundation Health Promotion Research Group, Department of Public Health, University of Oxford, Oxford, UK. peter.scarborough@dph.ox.ac.uk

- 13. van Dooren, C.; Marinussen, Mari; Blonk, Hans; Aiking, Harry; Vellinga, Pier. Food Policy. Feb2014, Vol. 44, p36-46. 11p.
- 14. Vieux F,Soler LG,Touazi D,Darmon N. High nutritional quality is not associated with low greenhouse gas emissions in self-selected diets of French adults. Am J Clin Nutr. 2013. 97:569-83. PMID:23364012. Institut National de Recherche Agronomique UR 1303, Ivry sur Seine, France.
- Wilson N,Nghiem N,Ni Mhurchu C,Eyles H,Baker MG,Blakely T. Foods and dietary patterns that are healthy, low-cost, and environmentally sustainable: a case study of optimization modeling for New Zealand. PLoS One. 2013. 8:e59648. PMID:23544082. Department of Public Health, University of Otago, Wellington, Wellington South, New Zealand. nick.wilson@otago.ac.nz

Excluded Articles

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

	Excluded Citations	Study design excluded	Low or medium HDI country	Does not assess independent variable/exposure as defined	Outcomes of interest not studied
1.	Beeton R. Sustainably managing food production resources to maximise human nutritional benefit. Asia Pac J Clin Nutr. 2003. 12:S50. PMID:15023667. #Author Address#	Review			
2.	Bere E,Brug J. Towards health- promoting and environmentally friendly regional diets - a Nordic example. Public Health Nutr. 2009. 12:91-6. PMID:18339225. Faculty of Health and Sport, University of Agder, Serviceboks 422, 4604 Kristiansand, Norway. elling.bere@uia.no				X
3.	Boer JD,Schosler H,Aiking H. "Meatless days" or "less but better"? Exploring strategies to adapt Western meat consumption to health and sustainability challenges. Appetite. 2014. #volume#:#pages#. PMID:24530654. Institute for Environmental Studies, VU University, Amsterdam, The Netherlands. Electronic address: joop.de.boer@vu.nl. Institute for Environmental Studies, VU University, Amsterdam, The Netherlands.	X			X
4.	Burlingame B,Dernini S. Sustainable diets: the Mediterranean diet as an example. Public Health Nutr. 2011.				

	14:2285-7. PMID:22166185. Nutrition and Consumer Protection Division, FAO, Viale delle Terme di Caracalla, Rome, Italy.	Review		
5.	Buttriss J,Riley H. Sustainable diets: harnessing the nutrition agenda. Food Chem. 2013. 140:402-7. PMID:23601382. British Nutrition Foundation, 52-54 High Holborn, London WC1V 6RQ, UK. j.buttriss@nutrition.org.uk	Х		
6.	Carlisle S,Hanlon P. Connecting food, well-being and environmental sustainability: towards an integrative public health nutrition. Critical Public Health. 2014. #volume#:#pages#. PMID:#accession number#. Carlisle, S., University of Aberdeen, Rowett Institute of Nutrition and Health, Greenburn Drive, Aberdeen, Aberdee	Х		
7.	Carlsson-Kanyama A,Gonzalez AD. Potential contributions of food consumption patterns to climate change. Am J Clin Nutr. 2009. 89:1704S- 1709S. PMID:19339402. Division of Industrial Ecology, Royal Institute of Technology, Stockholm, Sweden, Bariloche, Argentina.	Х		
8.	Caruso MG,Notarnicola M. Sustainable food and local development. J Gastrointest Cancer. 2012. 43:1-2. PMID:22083534. #Author Address#	Х		
9.	Charrondiere UR. Link between food composition, nutrition, agriculture and better food supply to combat malnutrition through foodbased approaches. Annals of Nutrition and Metabolism. 2013. 63:146. PMID:#accession number#. Charrondiere, U.R., Nutrition Division, FAO, Rome, Italy	Х		
10.	Cleveland DA,Radka CN,Muller NM,Watson TD,Rekstein NJ,Wright HV,Hollingshead SE. Effect of localizing fruit and vegetable consumption on greenhouse gas emissions and nutrition, Santa Barbara County. Environ Sci Technol. 2011. 45:4555-62. PMID:21513288. Environmental Studies Program, University of California, Santa		X	

Barbara, California 93106-4160, USA. cleveland@es.ucsb.edu			
 Clonan A, Holdsworth M, Swift JA, Leibovici D, Wilson P. The dilemma of healthy eating and environmental sustainability: the case of fish. Public Health Nutr. 2012. 15:277-84. PMID:21619717. Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK. angieclonandilley@gmail.com 		X	
 Coveney J. Food security and sustainability: Are we selling ourselves short?. Asia Pac J Clin Nutr. 2000. 9 Suppl 1:S97-S100. PMID:24398287. Department of Public Health, Flinders University, Adelaide, South Australia, Australia. 	x		
 13. de Carvalho A, Selem S, Mendes A, Pereira J, Fisberg R, Marchioni D. Excessive red and processed meat consumption in Sao Paulo, Brazil: Diet quality and environmental impact. Annals of Nutrition and Metabolism. 2013. 63:875. PMID:#accession number#. Carvalho, A., Department of Nutrition, Faculdade de Saude Publica, Universidade de Sao Paulo, Sao Paulo, Brazil 	x		
 14. Dowd K, Burke KJ. The influence of ethical values and food choice motivations on intentions to purchase sustainably sourced foods. Appetite. 2013. 69:137-44. PMID:23770118. Central Queensland University, School of Human, Health and Social Sciences, Institute for Health and Social Science Research, Higher Education Division, Rockhampton, Qld 4701, Australia. 		X	
 Edwards-Jones G. Does eating local food reduce the environmental impact of food production and enhance consumer health?. Proc Nutr Soc. 2010. 69:582-91. PMID:20696093. School of the Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd, North Wales, LL57 2UW, UK. g.ejones@bangor.ac.uk 	x		
16. Engels SV,Hansmann R,Scholz RW. Toward a sustainability label for food		х	

products an analysis of exports and			
products: an analysis of experts' and consumers' acceptance. Ecol Food Nutr. 2010. 49:30-60. PMID:21883088. Department of Environmental Sciences, Natural and Social Science Interface (NSSI), Zurich, Switzerland.			
 Friel S, Barosh LJ, Lawrence M. Towards healthy and sustainable food consumption: an Australian case study. Public Health Nutr. 2013. #volume#:1- 11. PMID:23759140. 1 National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 0200, Australia. 	X		
 Forman J,Silverstein J,Committee on N,Council on Environmental H,American Academy of P. Organic foods: health and environmental advantages and disadvantages. Pediatrics. 2012. 130:e1406-15. PMID:23090335. #Author Address# 		Х	
 Garnett T. Food sustainability: problems, perspectives and solutions. Proc Nutr Soc. 2013. 72:29-39. PMID:23336559. Food Climate Research Network, Environmental Change Institute, University of Oxford, Oxford, UK. taragarnett@fcrn.org.uk 	X		
 Gerlach SC, Loring PA. Rebuilding northern foodsheds, sustainable food systems, community well-being, and food security. Int J Circumpolar Health. 2013. 72:#pages#. PMID:23967414. Center for Cross-Cultural Studies, University of Alaska Fairbanks, Fairbanks, AK 99712, USA. scgerlach@alaska.edu 	X	Х	
 21. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010. 327:812-8. PMID:20110467. Department of Zoology and Institute of Biodiversity at the James Martin 21st Century School, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. charles.godfray@zoo.ox.ac.uk 	X		
22. Godfray HC,Garnett T. Food security and sustainable intensification. Philos Trans	Х		

R Soc Lond B Biol Sci. 2014. 369:20120273. PMID:24535385. Oxford Martin Programme on the Future of Food, Oxford University, , South Parks Road, Oxford OX1 3PS, UK.			
Graham RD,Humphries JM,Kitchen JL. Nutritionally enhanced cereals: A sustainable foundation for a balanced diet. Asia Pac J Clin Nutr. 2000. 9 Suppl 1:S91-6. PMID:24398286. Flinders Centre for Digestive Health, Flinders Medical Centre and Flinders University of South Australia, Bedford Park, South Australia, Australia.		X	
Griffin MK,Sobal J. Sustainable Food Activities Among Consumers: A Community Study. Journal of Hunger and Environmental Nutrition. 2013. 8:379-396. PMID:#accession number#. Sobal, J., Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, United States		X	
Haldeman LA,Gruber KJ,Ingram KP. Determinants of food security and diet among rural and urban latino/hispanic immigrants. Journal of Hunger and Environmental Nutrition. 2008. 2:67-84. PMID:#accession number#. Haldeman, L. A., Department of Nutrition, The University of North Carolina, Greensboro, NC 27402-6170, United States		Х	
Harrison M,Lee A,Findlay M,Nicholls R,Leonard D,Martin C. The increasing cost of healthy food. Aust N Z J Public Health. 2010. 34:179-86. PMID:23331363. Queensland Health, Australia.		Х	
Hendershot W,Turmel P. Is food grown in urban gardens safe?. Integr Environ Assess Manag. 2007. 3:463-4. PMID:17695120. McGill University, Ste- Anne-de-Bellevue, QC, Canada. william.hendershot@mcgill.ca	Х		
Hoogland CT, de Boer J, Boersema JJ. Food and sustainability: do consumers recognize, understand and value on- package information on production standards?. Appetite. 2007. 49:47-57. PMID:17303285. Institute for	Х	Х	

Environmental Studies, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands. 29. Horgan G,Macdiarmid J,Kyle J,Perrin A,Mc Neill G. Which nutrients limit changes to more sustainable diets?. Annals of Nutrition and Metabolism. 2013. 63:909. PMID:#accession number#. Horgan, G., Biomathematics and Statistics Scotland, Aberdeen, United Kingdom	x		
 30. Jenkins DJ,Sievenpiper JL,Pauly D,Sumaila UR,Kendall CW,Mowat FM. Are dietary recommendations for the use of fish oils sustainable?. CMAJ. 2009. 180:633-7. PMID:19289808. Risk Factor Modification Centre, St. Michael's Hospital, and Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ont. cyril.kendall@utoronto.ca 		X	
 31. Johns T,Eyzaguirre PB. Linking biodiversity, diet and health in policy and practice. Proc Nutr Soc. 2006. 65:182-9. PMID:16672079. School of Dietetics and Human Nutrition, Macdonald Campus, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada. tim.johns@mcgill.ca 	Review		
 32. Johnston J,Fanzo J,Cogill B. Understanding sustainable diets: Past, present and future efforts to advance sustainable diets. Annals of Nutrition and Metabolism. 2013. 63:1063. PMID:#accession number#. Johnston, J., School of International and Public Affairs, Columbia University, New York, United States 		Х	
 33. Jones M, Dailami N, Weitkamp E, Salmon D, Kimberlee R, Morley A, Orme J. Food sustainability education as a route to healthier eating: evaluation of a multicomponent school programme in English primary schools. Health Educ Res. 2012. 27:448-58. PMID:22355199. Department of Health and Applied Social Studies, Faculty of Health and Life Sciences, University of the West of England, Bristol, BS16 1DD, UK. matthew.jones@uwe.ac.uk 		Х	

34.	Jones SJ,Feenstra GW,Wasserman A. Institutional policy change to promote health and sustainability through food. Adv Nutr. 2012. 3:335-6. PMID:22585908. Center for Research in Nutrition and Health Disparities and Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA. sjones@sc.edu			X	
35.	Joyce A, Dixon S, Comfort J, Hallett J. Reducing the environmental impact of dietary choice: perspectives from a behavioural and social change approach. J Environ Public Health. 2012. 2012:978672. PMID:22754580. EACH Social and Community Health, 46 Warrandyte Road, Ringwood, VIC 3134, Australia. andrew.joyce@monash.edu	X			
36.	Kim SS,Rogers BL,Coates J,Gilligan DO,Sarriot E. Building evidence for sustainability of food and nutrition intervention programs in developing countries. Adv Nutr. 2013. 4:524-6. PMID:24038245. Poverty, Health, and Nutrition Division, International Food Policy Research Institute, Washington DC.		Х	X	
37.	Kimmons J,Wood M,Villarante JC,Lederer A. Adopting healthy and sustainable food service guidelines: emerging evidence from implementation at the United States Federal Government, New York City, Los Angeles County, and Kaiser Permanente. Adv Nutr. 2012. 3:746-8. PMID:22983863. Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Nutrition, Physical Activity, and Obesity, Atlanta, GA, USA. jkimmons@cdc.gov			X	
38.	Kjrgard B,Land B,Pedersen KB. Health and sustainability. Health Promot Int. 2013. #volume#:#pages#. PMID:23300191. Department of Environmental, Social and Spatial Change, Roskilde University, 4000 Roskilde, Denmark.	X			

20	Kvalem HE,Knutsen HK,Thomsen		Х	Х
	C,Haugen M,Stigum H,Brantsaeter AL,Froshaug M,Lohmann N,Papke O,Becher G,Alexander J,Meltzer HM. Role of dietary patterns for dioxin and PCB exposure. Mol Nutr Food Res. 2009. 53:1438-51. PMID:19842105. Norwegian Institute of Public Health, Oslo, Norway. helen.engelstad@fhi.no		A	
40.	Lang T. Eating green: The policy challenge of sustainable diets. Australasian Medical Journal. 2011. 4:704. PMID:#accession number#. Lang, T., City University, London, United Kingdom	Review		
41.	Lang T,Barling D. Nutrition and sustainability: an emerging food policy discourse. Proc Nutr Soc. 2013. 72:1-12. PMID:23217475. Centre for Food Policy, City University London, Northampton Square, London EC1V OHB, UK. t.lang@city.ac.uk	Х		
42.	Li D,Hu X. Fish and its multiple human health effects in times of threat to sustainability and affordability: are there alternatives?. Asia Pac J Clin Nutr. 2009. 18:553-63. PMID:19965348. Department of Food Science and Nutrition, Zhejiang University, 268 Kaixuan Road, Hangzhou, Zhejiang, China 310029. duoli@zju.edu.cn		X	
43.	Linnemann AR, Dijkstra DS. Toward sustainable production of protein-rich foods: appraisal of eight crops for Western Europe. Part I. Analysis of the primary links of the production chain. Crit Rev Food Sci Nutr. 2002. 42:377- 401. PMID:12180778. Product Design and Quality Management Group, Food Technology and Nutritional Sciences, Wageningen University, The Netherlands. anita.linnemann@ift.fdsci.wag-ur.nl	Х	Х	
44.	Lloret J. Human health benefits supplied by Mediterranean marine biodiversity. Mar Pollut Bull. 2010. 60:1640-6. PMID:20822779. University of Girona, Faculty of Sciences, Department of Environmental Sciences, 17071 Girona, Catalonia, Spain. josep.lloret@udg.edu	X	X	

	Macdiarmid JI. Is a healthy diet an environmentally sustainable diet?. Proc Nutr Soc. 2013. 72:13-20. PMID:23186839. Public Health Nutrition Research Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB25 2ZD, UK. j.macdiarmid@abdn.ac.uk MacdiarmidJ,Kyle J,Horgan G,McNeill G. When is a healthy diet not a sustainable diet?. Annals of Nutrition and Metabolism. 2013. 63:973. PMID:#accession number#. Macdiarmid, J., University of Aberdeen, Aberdeen, United Kingdom	Review		
47.	MacMillan Uribe AL, Winham DM, Wharton CM. Community supported agriculture membership in Arizona. An exploratory study of food and sustainability behaviours. Appetite. 2012. 59:431-6. PMID:22698977. School of Nutrition and Health Promotion, Arizona State University, 500 North 3rd Street, Phoenix, AZ 85004, USA.		Х	
48.	Martin KS, Wu R, Wolff M, Colantonio AG, Grady J. A novel food pantry program: food security, self-sufficiency, and diet-quality outcomes. Am J Prev Med. 2013. 45:569-75. PMID:24139769. University of Saint Joseph, West Hartford. Electronic address: Ksmartin@usj.edu.		Х	
49.	Masset G,Soler LG,Vieux F,Darmon N. Identifying sustainable foods combining low environmental impact, high nutritional quality, and moderate price. Annals of Nutrition and Metabolism. 2013. 63:1814. PMID:#accession number#. Masset, G., UMR NORT (Nutrition, Obesite et Risque Thrombotique) INRA1260, INSERM 1062, Aix-Marseille Universite, Marseille, France	Х		
50.	Masset G,Vieux F,Maillot M,Darmon N. To what extent are dietary shifts a potential lever to reduce greenhouse gas emissions? A simulation study. Annals of Nutrition and Metabolism. 2013. 63:1752. PMID:#accession number#. Masset, G., UMR NORT	Х		

	(Nutrition,Obesite et Risque Thrombotique) INRA1260, INSERM 1062, Aix-Marseille Universite, France			
51.	Medina FX. Food consumption and civil society: Mediterranean diet as a sustainable resource for the Mediterranean area. Public Health Nutr. 2011. 14:2346-9. PMID:22166194. Department of Food Systems, Culture and Society, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Mediatic UOC Headquarters Roc Boronat, 117 E-08018 Barcelona, Catalonia, Spain. fxmedina@uoc.edu	X		
52.	Meinert Larsen T, Poulsen SK, Micheelsen A, Meyer C, Mithril C, Astrup A. The new nordic diet as a healthy, highly palatable and sustainable dietary approach - the opus experience. Obesity Facts. 2012. 5:5. PMID:#accession number#. Meinert Larsen, T., University of Copenhagen, Department of Human Nutrition, Faculty of Science, Frederiksberg, Denmark		Х	X
53.	McMichael AJ,Butler CD. Fish, health, and sustainability. Am J Prev Med. 2005. 29:322-3. PMID:16242597. National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia.	Х		
54.	Nantel G,Tontisirin K. Policy and sustainability issues. J Nutr. 2002. 132:839S-44S. PMID:11925493. Food and Nutrition Division, FAO, Rome, Italy 00100. Guy.Nantel@fao.org	Х		
55.	Pardue SL. Food, energy, and the environment. Poult Sci. 2010. 89:797- 802. PMID:20308413. Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA. sam_pardue@ncsu.edu	Х		
56.	Phillips C, Hoenigman R, Higbee B, Reed T. Understanding the sustainability of retail food recovery. PLoS One. 2013. 8:e75530. PMID:24130716. Department of Computer Science, University of Colorado, Boulder, Colorado, United States of America.		X	
57.	Pilgrim A,Barker M,Jackson A,Ntani G,Crozier S,Inskip H,Godfrey K,Cooper		Х	

	C,Robinson S,Group SWSS. Does living in a food insecure household impact on the diets and body composition of young children? Findings from the Southampton Women's Survey. J Epidemiol Community Health. 2012. 66:e6. PMID:21652519. Southampton NIHR Biomedical Research Unit in Nutrition, Diet & Lifestyle, University of Southampton School of Medicine, Southampton, UK.				
58.	Pittman DW, Parker JS, Getz BR, Jackson CM, Le TA, Riggs SB, Shay JM. Cost-free and sustainable incentive increases healthy eating decisions during elementary school lunch. Int J Obes (Lond). 2012. 36:76-9. PMID:22041982. Department of Psychology, Wofford College, Spartanburg, SC 29303, USA. pittmandw@wofford.edu			X	
59.	Premanandh J. Factors affecting food security and contribution of modern technologies in food sustainability. J Sci Food Agric. 2011. 91:2707-14. PMID:22002569. Abu Dhabi Food Control Authority, PO Box 52150, Abu Dhabi, United Arab Emirates. jpanandh@yahoo.com	Х			
60.	Ray SK,Biswas AB,Kumar S. A study of dietary pattern, household food security and nutritional profile of under-five children of a community of West Bengal. J Indian Med Assoc. 2000. 98:517-9, 522-3. PMID:11291783. Department of Community Medicine, Medical College, Calcutta.		X		
61.	Robinson R,Smith C. Integrating issues of sustainably produced foods into nutrition practice: A survey of Minnesota Dietetic Association members. J Am Diet Assoc. 2003. 103:608-611. PMID:#accession number#. #Author Address#	Х		X	
62.	Ronald P,Adamchak R. The future of sustainable food production. Ann N Y Acad Sci. 2010. 1190:184-5. PMID:20388151. Department of Plant Pathology, University of California, Davis, California 95616, USA. pcronald@ucdavis.edu	X			

		1		
63.	Rose N,Serrano E,Hosig K,Haas C,Reaves D,Nickols-Richardson SM. The 100-mile diet: A community approach to promote sustainable food systems impacts dietary quality. Journal of Hunger and Environmental Nutrition. 2008. 3:270- 285. PMID:#accession number#. Rose, N., School of Nutrition and Exercise Science, Bastyr Univesity, Kenmore, WA 98028-4966, United States		X	
64.	Smith MD,Roheim CA,Crowder LB,Halpern BS,Turnipseed M,Anderson JL,Asche F,Bourillon L,Guttormsen AG,Khan A,Liguori LA,McNevin A,O'Connor MI,Squires D,Tyedmers P,Brownstein C,Carden K,Klinger DH,Sagarin R,Selkoe KA. Economics. Sustainability and global seafood. Science. 2010. 327:784-6. PMID:20150469. Nicholas School of the Environment, Duke University, Durham, NC 27708, USA. marsmith@duke.edu		Х	
65.	Story M, Hamm MW, Wallinga D. Food Systems and Public Health: Linkages to Achieve Healthier Diets and Healthier Communities. J Hunger Environ Nutr. 2009. 4:219-224. PMID:23144670. School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.	Х		
66.	Swaminathan MS,Bhavani RV. Food production & availabilityessential prerequisites for sustainable food security. Indian J Med Res. 2013. 138:383-91. PMID:24135188. M.S. Swaminathan Research Foundation (MSSRF), Chennai, India.	X	X	
67.	Temme EHM,Bakker E,Brosens MCC,Verkaik-Kloosterman J,Ocke MC,Van Raaij JMA. How does a shift towards a more sustainable food consumption pattern affect nutrient intake of dutch children? Annals of Nutrition and Metabolism. 2013. 63:955. PMID:#accession number#. Temme, E.H.M., National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands	Х		
68.	Thorsdottir I. Does local diet lead to more sustainable diet?. Annals of	Х		

69.	Nutrition and Metabolism. 2013. 63:115-116. PMID:#accession number#. Thorsdottir, I., School of Health Sciences, University of Iceland, Reykjavik, Iceland Tobler C,Visschers VH,Siegrist M. Eating green. Consumers' willingness to adopt ecological food consumption behaviors. Appetite. 2011. 57:674-82. PMID:21896294. ETH Zurich, Institute of Environmental Decisions, Consumer Behavior, Universitaetstrasse 16, CHN J 75.2, 8092 Zurich, Switzerland.		X	
70.	Van Audenhaege M,Heraud F,Menard C,Bouyrie J,Morois S,Calamassi-Tran G,Lesterle S,Volatier JL,Leblanc JC. Impact of food consumption habits on the pesticide dietary intake: comparison between a French vegetarian and the general population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2009. 26:1372-88. PMID:19707917. Agroparistech, Paris, France.		Х	Х
71.	Vani KP,Doble M. Sustainable development in agriculture, food and nutritiona patent analysis. Recent Pat Food Nutr Agric. 2011. 3:133-41. PMID:21428874. Department of Biotechnology, Bioengineering and Drug Design Lab Indian Institute of Technology Madras, Chennai 600 036, India.	Х		
72.	von Schirnding Y,Yach D. Unhealthy consumption threatens sustainable development. Rev Saude Publica. 2002. 36:379-82. PMID:12364909. #Author Address#	X		
73.	Wood B,Swinburn B,Burns C. Food security and eating well for all in Victoria. Asia Pac J Clin Nutr. 2003. 12 Suppl:S17. PMID:15023609. School of Health Sciences, Deakin University, Melbourne, VIC 3125.		Х	